Sample Size Calculations for Variant Surveillance in the Presence of Biological and Systematic Biases
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
As demonstrated during the SARS-CoV-2 pandemic, detecting and tracking the emergence and spread of pathogen variants is an important component of monitoring infectious disease outbreaks. Pathogen genome sequencing has emerged as the primary tool for variant characterization, so it is important to consider the number of sequences needed when designing surveillance programs or studies, both to ensure accurate conclusions and to optimize use of limited resources. However, current approaches to calculating sample size for variant monitoring often do not account for the biological and logistical processes that can bias which infections are detected and which samples are ultimately selected for sequencing. In this manuscript, we introduce a framework that models the full process— including potential sources of bias—from infection detection to variant characterization, and we demonstrate how to use this framework to calculate appropriate sample sizes for sequencing-based surveillance studies. We consider both cross-sectional and continuous sampling, and we have implemented our method in a publicly available tool that allows users to estimate necessary sample sizes given a specific aim (e.g., variant detection or measuring variant prevalence) and sampling method. Our framework is designed to be easy to use, while also flexible enough to be adapted to other pathogens and surveillance scenarios.
Article activity feed
-
-
-
SciScore for 10.1101/2021.12.30.21268453: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a …
SciScore for 10.1101/2021.12.30.21268453: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-