Kinesin-II motors differentially impact biogenesis of distinct extracellular vesicle subpopulations shed from C. elegans sensory cilia

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Extracellular vesicles (EVs) are bioactive lipid-bilayer enclosed particles released from nearly all cells. One specialized site for EV shedding is the primary cilium, a conserved signaling organelle. The mechanisms underlying cargo enrichment and biogenesis of heterogeneous EVs shed from cilia are unclear. Here we discover the conserved ion channel CLHM-1 as a new ciliary EV cargo. Using super-resolution microscopy, we imaged EVs released into the environment from sensory neuron cilia of C. elegans expressing fluorescently-tagged CLHM-1 and TRP polycystin-2 channel PKD-2 EV cargoes at endogenous levels. We find that these proteins are enriched in distinct EV subpopulations that are differentially shed in response to availability of hermaphrodite mating partners. Both CLHM-1 and PKD-2 localize to the ciliary base and middle segment of the cilium proper, but PKD-2 alone is present in the cilium distal tip and EVs shed from this site. CLHM-1 EVs released into the environment bud from a secondary site, the periciliary membrane compartment at the ciliary base. We show that individual heterotrimeric and homomeric kinesin-II motors have discrete impacts on the colocalization of PKD-2 and CLHM-1 in both cilia and EVs. Total loss of kinesin-II activity significantly decreases shedding of PKD-2 but not CLHM-1 EVs. Our data demonstrate that anterograde kinesin-II-dependent intraflagellar transport is required for selective enrichment of specific protein cargoes into heterogeneous EVs with different signaling potentials.

Article activity feed