Compared with SARS-CoV2 wild type’s spike protein, the SARS-CoV2 omicron’s receptor binding motif has adopted a more SARS-CoV1 and/or bat/civet-like structure

This article has been Reviewed by the following groups

Read the full article

Abstract

Our study focuses on free energy calculations of SARS-CoV2 spike protein receptor binding motives (RBMs) from wild type and variants-of-concern with particular emphasis on currently emerging SARS- CoV2 omicron variants of concern (VOC). Our computational free energy analysis underlines the occurrence of positive selection processes that specify omicron host adaption and bring changes on the molecular level into context with clinically relevant observations. Our free energy calculations studies regarding the interaction of omicron’s RBM with human ACE2 shows weaker binding to ACE2 than alpha’s, delta’s, or wild type’s RBM. Thus, less virus is predicted to be generated in time per infected cell. Our mutant analyses predict with focus on omicron variants a reduced spike-protein binding to ACE2-receptor protein possibly enhancing viral fitness / transmissibility and resulting in a delayed induction of danger signals as trade-off. Finally, more virus is produced but less per cell accompanied with delayed Covid-19 immunogenicity and pathogenicity. Regarding the latter, more virus is assumed to be required to initiate inflammatory immune responses.

Article activity feed

  1. SciScore for 10.1101/2021.12.14.472585: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.