Cardiometabolic outcomes up to 12 months after COVID-19 infection. A matched cohort study in the UK

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Acute Coronavirus Disease 2019 (COVID-19) has been associated with new-onset cardiovascular disease (CVD) and diabetes mellitus (DM), but it is not known whether COVID-19 has long-term impacts on cardiometabolic outcomes. This study aimed to determine whether the incidence of new DM and CVDs are increased over 12 months after COVID-19 compared with matched controls.

Methods and findings

We conducted a cohort study from 2020 to 2021 analysing electronic records for 1,356 United Kingdom family practices with a population of 13.4 million. Participants were 428,650 COVID-19 patients without DM or CVD who were individually matched with 428,650 control patients on age, sex, and family practice and followed up to January 2022. Outcomes were incidence of DM and CVD. A difference-in-difference analysis estimated the net effect of COVID-19 allowing for baseline differences, age, ethnicity, smoking, body mass index (BMI), systolic blood pressure, Charlson score, index month, and matched set. Follow-up time was divided into 4 weeks from index date (“acute COVID-19”), 5 to 12 weeks from index date (“post-acute COVID-19”), and 13 to 52 weeks from index date (“long COVID-19”). Net incidence of DM increased in the first 4 weeks after COVID-19 (adjusted rate ratio, RR 1.81, 95% confidence interval (CI) 1.51 to 2.19) and remained elevated from 5 to 12 weeks (RR 1.27, 1.11 to 1.46) but not from 13 to 52 weeks overall (1.07, 0.99 to 1.16). Acute COVID-19 was associated with net increased CVD incidence (5.82, 4.82 to 7.03) including pulmonary embolism (RR 11.51, 7.07 to 18.73), atrial arrythmias (6.44, 4.17 to 9.96), and venous thromboses (5.43, 3.27 to 9.01). CVD incidence declined from 5 to 12 weeks (RR 1.49, 1.28 to 1.73) and showed a net decrease from 13 to 52 weeks (0.80, 0.73 to 0.88). The analyses were based on health records data and participants’ exposure and outcome status might have been misclassified.

Conclusions

In this study, we found that CVD was increased early after COVID-19 mainly from pulmonary embolism, atrial arrhythmias, and venous thromboses. DM incidence remained elevated for at least 12 weeks following COVID-19 before declining. People without preexisting CVD or DM who suffer from COVID-19 do not appear to have a long-term increase in incidence of these conditions.

Article activity feed

  1. SciScore for 10.1101/2021.12.13.21267723: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    RandomizationPatients were randomly sampled from the entire registered population of CPRD Aurum March 2021 release, individually matching on age, gender and family practice.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Strengths and limitations: This study drew on a large, longitudinal population-based data resource that enabled us to conduct a matched analysis of mortality and new CVD and DM diagnoses for up to one year following Covid-19.[28] The study drew on clinical records with several limitations. We included patients with both confirmed and suspected Covid-19, but a sensitivity analysis found that restricting the analysis to PCR confirmed infections would not alter conclusions. However, PCR testing was associated with patient characteristics and reliance on PCR confirmation for participant selection might lead to bias. The database enabled adjustment for a range of important covariates, but these were not always completely recorded. This may reflect that this was a relatively young to middle-aged cohort lacking in long-term conditions that would warrant regular consultations and monitoring. In health records, values are commonly missing ‘not at random’ making the application of imputation methods more difficult. We did not include a measure of deprivation, which is associated both with diabetes and cardiovascular disease, but cases and controls were matched for family practice, providing partial control for area-based measures including deprivation. Analyses did not include measures of the severity of illness in Covid-19. However, the concept of ‘severity’ might be difficult to operationalise in a study of Covid-19 complications because a greater number of complications might be ind...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.