Covid-19 social distancing: when less is more

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Covid-19 is the first digitally documented pandemic in history, presenting a unique opportunity to learn how to best deal with similar crises in the future. In this study we have carried out a model-based evaluation of the effectiveness of social distancing, using Austria and Slovenia as examples. Whereas the majority of comparable studies have postulated a negative relationship between the stringency of social distancing (reduction in social contacts) and the scale of the epidemic, our model has suggested a sinusoidal relationship, with tipping points at which the system changes its predominant regime from ‘less social distancing – more cumulative deaths and infections’ to ‘less social distancing – fewer cumulative deaths and infections’. This relationship was found to persist in scenarios with distinct seasonal variation in transmission and limited national intensive care capabilities. In such situations, relaxing social distancing during low transmission seasons (spring and summer) was found to relieve pressure from high transmission seasons (fall and winter) thus reducing the total number of infections and fatalities. Strategies that take into account this relationship could be particularly beneficial in situations where long-term containment is not feasible.

Article activity feed

  1. SciScore for 10.1101/2021.12.07.21267415: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.