Simulating the impact of vaccination rates on the initial stages of a COVID-19 outbreak in New Zealand (Aotearoa) with a stochastic model

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Aim

The August 2021 COVID-19 outbreak in Auckland has caused the New Zealand government to transition from an elimination strategy to suppression, which relies heavily on high vaccination rates in the population. As restrictions are eased and as COVID-19 leaks through the Auckland boundary, there is a need to understand how different levels of vaccination will impact the initial stages of COVID-19 outbreaks that are seeded around the country.

Method

A stochastic branching process model is used to simulate the initial spread of a COVID-19 outbreak for different vaccination rates.

Results

High vaccination rates are effective at minimizing the number of infections and hospitalizations. Increasing vaccination rates from 20% (approximate value at the start of the August 2021 outbreak) to 80% (approximate proposed target) of the total population can reduce the median number of infections that occur within the first four weeks of an outbreak from 1011 to 14 (25 th and 75 th quantiles of 545-1602 and 2-32 for V=20% and V=80%, respectively). As the vaccination rate increases, the number of breakthrough infections (infections in fully vaccinated individuals) and hospitalizations of vaccinated individuals increases. Unvaccinated individuals, however, are 3.3x more likely to be infected with COVID-19 and 25x more likely to be hospitalized.

Conclusion

This work demonstrates the importance of vaccination in protecting individuals from COVID-19, preventing high caseloads, and minimizing the number of hospitalizations and hence limiting the pressure on the healthcare system.

Article activity feed

  1. SciScore for 10.1101/2021.11.22.21266721: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.