Causal Inference and COVID-19 Nursing Home Patients: Identifying Factors That Reduced Mortality Risk

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Less than 1% of the US population lives in long-term care facilities, yet this subset of the population accounts for 22% of total COVID-19 related deaths. 1 Because of a lack of experimental evidence to treat COVID-19, analysis of real-world data to identify causal relationships between treatments/policies to mortality and morbidity among high-risk individuals is critical. We applied causal inference (CI) analysis to longitudinal patient-level health data of 4,091 long-term care high-risk patients with COVID-19 to determine if any actions or therapies delivered from January to August of 2020 reduced COVID-19 patient mortality rates during this period.

Causal inference findings determined that certain supportive care interventions caused reduced mortality rates for nursing home residents regardless of severity of disease (as measured by oxygen saturation level, presence of pneumonia and organ failure), comorbidities or social determinants of health such as race, age, and weight. 2 While we do not address the biological mechanisms associated with specific medical interventions and their impact on mortality, this analysis suggests methods to validate and optimize treatment protocols using domain knowledge and causal inference analysis of real-world data across patient populations and care settings.

Article activity feed

  1. SciScore for 10.1101/2021.11.18.21266489: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    EthicsIRB: Data were de-identified and determined by an independent institutional review board as nonhuman subject research.
    Sex as a biological variableOf the 4,091 residents with confirmed COVID-19 infections in the study population, 2,277 (55.7%) were female.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    13 Analysis was conducted using Python 3.9.0 and the EconML and Scikit-Learn packages.
    Python
    suggested: (IPython, RRID:SCR_001658)
    Scikit-Learn
    suggested: (scikit-learn, RRID:SCR_002577)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.