Predicting SARS-CoV-2 epitope-specific TCR recognition using pre-trained protein embeddings

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The COVID-19 pandemic is ongoing because of the high transmission rate and the emergence of SARS-CoV-2 variants. The P272L mutation in SARS-Cov-2 S -protein is known to be highly relevant to the viral escape associated with the second pandemic wave in Europe. Epitope-specific T-cell receptor (TCR) recognition is a key factor in determining the T-cell immunogenicity of a SARS-CoV-2 epitope. Although several data-driven methods for predicting epitope-specific TCR recognition have been proposed, they remain challenging owing to the enormous diversity of TCRs and the lack of available training data. Self-supervised transfer learning has recently been demonstrated to be powerful for extracting useful information from unlabeled protein sequences and increasing the predictive performance of the fine-tuned models in downstream tasks.

Here, we present a predictive model based on Bidirectional Encoder Representations from Transformers (BERT), employing self-supervised transfer learning, to predict SARS-CoV-2 T-cell epitope-specific TCR recognition. The fine-tuned model showed notably high predictive performance for independent evaluation using the SARS-CoV-2 epitope-specific TCR CDR3β sequence datasets. In particular, we found the proline at position 4 corresponding to the P272L mutation in the SARS-CoV-2 S -protein 269-277 epitope ( YLQPRTFLL ) may contribute substantially to TCR recognition of the epitope through interpreting the output attention weights of our model.

We anticipate that our findings will provide new directions for constructing a reliable data-driven model to predict the immunogenic T-cell epitopes using limited training data and help accelerate the development of an effective vaccine in response to SARS-CoV-2 variants.

Article activity feed

  1. SciScore for 10.1101/2021.11.17.468929: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Python source codes and all the datasets supporting this work can be downloaded from https://github.com/luseedbio/TCRBert.
    Python
    suggested: (IPython, RRID:SCR_001658)

    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.