Modelling COVID-19 Pandemic Dynamics Using Transparent, Interpretable, Parsimonious and Simulatable (TIPS) Machine Learning Models: A Case Study from Systems Thinking and System Identification Perspectives

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Since the outbreak of COVID-19, an astronomical number of publications on the pandemic dynamics appeared in the literature, of which many use the susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR) models, or their variants, to simulate and study the spread of the coronavirus. SIR and SEIR are continuous-time models which are a class of initial value problems (IVPs) of ordinary differential equations (ODEs). Discrete-time models such as regression and machine learning have also been applied to analyze COVID-19 pandemic data (e.g. predicting infection cases), but most of these methods use simplified models involving a small number of input variables pre-selected based on a priori knowledge, or use very complicated models (e.g. deep learning), purely focusing on certain prediction purposes and paying little attention to the model interpretability. There have been relatively fewer studies focusing on the investigations of the inherent time-lagged or time-delayed relationships e.g. between the reproduction number (R number), infection cases, and deaths, analyzing the pandemic spread from a systems thinking and dynamic perspective. The present study, for the first time, proposes using systems engineering and system identification approach to build transparent, interpretable, parsimonious and simulatable (TIPS) dynamic machine learning models, establishing links between the R number, the infection cases and deaths caused by COVID-19. The TIPS models are developed based on the well-known NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous inputs) model, which can help better understand the COVID-19 pandemic dynamics. A case study on the UK COVID-19 data is carried out, and new findings are detailed. The proposed method and the associated new findings are useful for better understanding the spread dynamics of the COVID-19 pandemic.

Article activity feed

  1. SciScore for 10.1101/2021.11.01.21265653: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.