Multi-label topic classification for COVID-19 literature annotation using an ensemble model based on PubMedBERT

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The BioCreative VII Track 5 calls for participants to tackle the multi-label classification task for automated topic annotation of COVID-19 literature. In our participation, we evaluated several deep learning models built on PubMedBERT, a pre-trained language model, with different strategies addressing the challenges of the task. Specifically, multi-instance learning was used to deal with the large variation in the lengths of the articles, and focal loss function was used to address the imbalance in the distribution of different topics. We found that the ensemble model performed the best among all the models we have tested. Test results of our submissions showed that our approach was able to achieve satisfactory performance with an F1 score of 0.9247, which is significantly better than the baseline model (F1 score: 0.8678) and the mean of all the submissions (F1 score: 0.8931).

Article activity feed

  1. SciScore for 10.1101/2021.10.26.465946: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    PubMedBERT was pre-trained from scratch with corpus developed from PubMed articles and it consistently outperformed all the other BERT models in most biomedical natural language processing tasks (5).
    PubMed
    suggested: (PubMed, RRID:SCR_004846)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.