High-throughput imaging of Caenorhabditis elegans aging using collective activity monitoring

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The genetic manipulability and short lifespan of C. elegans make it an important model for aging research. Widely applied methods for measurements of worm aging based on manual observation are labor intensive and low-throughput. Here, we describe the Worm Collective Activity Monitoring Platform (WormCamp), a system for assaying aging in C. elegans by monitoring activity of populations of worms in standard 24-well plates. We show that metrics based on the rate of decline in collective activity can be used to estimate the average lifespan and locomotor healthspan in the population. Using the WormCamp, we assay a panel of highly divergent natural isolates of C. elegans and show that both lifespan and locomotor healthspan display substantial heritability. To facilitate analysis of large numbers of worms, we developed a robotic imaging system capable of simultaneous automated monitoring of activity, lifespan, and locomotor healthspan in up to 2,304 populations containing a total of ~90,000 animals. We applied the automated system to conduct a large-scale RNA interference screen for genes that affect lifespan and locomotor healthspan. The WormCamp system is complementary to other current automated methods for assessing C. elegans aging and is well suited for efficiently screening large numbers of conditions.

Article activity feed