Transcriptome data from human nasal epithelial cells infected by H3N2 influenza virus indicate early unbalanced ROS/RNA levels, temporarily increased aerobic fermentation linked to enhanced α-tubulin and rapid energy-dependent IRF9-marked immunization

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

Transcriptome studies of a selected gene set ( ReprogVirus ) had identified unbalanced ROS/RNS levels, which connected to increased aerobic fermentation that linked to alpha-tubulin-based cell restructuration and cell cycle control, as a ma jor c omplex t rait for e arly d e novo programming ( CoV-MAC-TED ) upon SARS-CoV-2 infection. Recently, CoV-MAC-TED was confirmed as promising marker by using primary target human nasal epithelial cells (NECs) infected by two SARS-CoV-2 variants with different effects on disease severity. To further explore this marker/cell system as a standardized tool for identifying anti-viral targets in general, testing of further virus types is required. Results: Transcriptome level profiles of H3N2 influenza-infected NECs indicated ROS/RNS level changes and increased transcript accumulation of genes related to glycolysis, lactic fermentation and α-tubulin at 8 hours post infection. These early changes linked to energy-dependent, IRF9-marked rapid immunization. However, ReprogVirus -marker genes indicated the absence of initial cell cycle progress, which contrasted our findings during infections with two SARS-CoV-2 variants, where cell cycle progress was linked to delayed IRF9 response. Our results point to the possibility of CoV-MAC-TED-assisted, rapid individual host cell response identification upon virus infections. Conclusion: The complex trait CoV-MAC-TED can identify similar and differential early responses of SARS-CoV-2 and influenza H3N2 viruses. This indicates its appropriateness to search for anti-viral targets in view of therapeutic design strategies. For standardization, human NECs can be used. This marker/cell system is promising to identify differential early cell responses upon viral infections also depending on cell origins.

Article activity feed

  1. SciScore for 10.1101/2021.10.18.464828: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.