Who has long-COVID? A big data approach
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Background
Post-acute sequelae of SARS-CoV-2 infection (PASC), otherwise known as long-COVID, have severely impacted recovery from the pandemic for patients and society alike. This new disease is characterized by evolving, heterogeneous symptoms, making it challenging to derive an unambiguous long-COVID definition. Electronic health record (EHR) studies are a critical element of the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative, which is addressing the urgent need to understand PASC, accurately identify who has PASC, and identify treatments.
Methods
Using the National COVID Cohort Collaborative’s (N3C) EHR repository, we developed XGBoost machine learning (ML) models to identify potential long-COVID patients. We examined demographics, healthcare utilization, diagnoses, and medications for 97,995 adult COVID-19 patients. We used these features and 597 long-COVID clinic patients to train three ML models to identify potential long-COVID patients among (1) all COVID-19 patients, (2) patients hospitalized with COVID-19, and (3) patients who had COVID-19 but were not hospitalized.
Findings
Our models identified potential long-COVID patients with high accuracy, achieving areas under the receiver operator characteristic curve of 0.91 (all patients), 0.90 (hospitalized); and 0.85 (non-hospitalized). Important features include rate of healthcare utilization, patient age, dyspnea, and other diagnosis and medication information available within the EHR. Applying the “all patients” model to the larger N3C cohort identified 100,263 potential long-COVID patients.
Interpretation
Patients flagged by our models can be interpreted as “patients likely to be referred to or seek care at a long-COVID specialty clinic,” an essential proxy for long-COVID diagnosis in the current absence of a definition. We also achieve the urgent goal of identifying potential long-COVID patients for clinical trials. As more data sources are identified, the models can be retrained and tuned based on study needs.
Funding
This study was funded by NCATS and NIH through the RECOVER Initiative.
Article activity feed
-
SciScore for 10.1101/2021.10.18.21265168: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources The python package XGBoost was used to construct the models, using 924 features in total. pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any …
SciScore for 10.1101/2021.10.18.21265168: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources The python package XGBoost was used to construct the models, using 924 features in total. pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-