Impact of routine asymptomatic screening on COVID-19 incidence in a highly vaccinated university population

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

With the return of in-person classes, an understanding of COVID-19 transmission in vaccinated university campuses is essential. Given the context of high anticipated vaccination rates and other measures, there are outstanding questions of the potential impact of campus-based asymptomatic screening.

Methods

We estimated the expected number of cases and hospitalizations in one semester using rates derived for British Columbia (BC), Canada up to September 15 th , 2021 and age-standardizing to a University population. To estimate the expected number of secondary cases averted due to routine tests of unvaccinated individuals in a BC post-secondary institution, we used a probabilistic model based on the incidence, vaccination effectiveness, vaccination coverage and R 0 . We examined multiple scenarios of vaccine coverage, screening frequency, and pre-vaccination R 0 .

Results

For one 12 week semester, the expected number of cases is 67 per 50,000 for 80% vaccination coverage and 37 per 50,000 for 95% vaccination coverage. Screening of the unvaccinated population averts an expected 6-16 cases per 50,000 at 80% decreasing to 1-2 averted cases per 50,000 at 95% vaccination coverage for weekly to daily screening. Further scenarios can be explored using a web-based application.

Interpretation

Routine screening of unvaccinated individuals may be of limited benefit if vaccination coverage is 80% or greater within a university setting.

Article activity feed

  1. SciScore for 10.1101/2021.10.18.21265057: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.