SARS-COV-2 γ variant acquires spike P681H or P681R for improved viral fitness

This article has been Reviewed by the following groups

Read the full article

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) evolves and generates different variants through a continuously branching model. Four variants of concern have been the major pandemic drivers around the world. One important question is how they may evolve and generate subvariants, some of which may be even more virulent and drive the pandemic further. While investigating how γ (or P.1) variant has been evolving, I noticed the spike substitution P681H in a group of genomes encoding a new subvariant, which has been designated P.1.7. This subvariant has become the dominant P.1 sublineage in Brazil, Italy, Spain and Peru, supporting that P681H confers evolutionary advantage to P.1.7. In Brazil and Peru, P.1.7 was still responsible for ~30% and ~40% cases, respectively, in August 2021. However, it has been competed out by δ1 (a δ subvariant) in both countries, Italy and Spain, suggesting that P.1.7 is not as virulent as δ1. In addition, 160 P.1 genomes possess a related substitution, P681R, and 120 of them encode a new subvariant, designated P.1.8. This P.1 subvariant carries two additional spike substitutions, T470N and C1235F, located at the receptor-binding pocket and cytoplasmic tail of spike protein, respectively. More P.1.8 genomes have been identified than P.1 genomes that encode P681R but not T470N and C1235F, suggesting that these two substitutions improve virulence of P.1.8 subvariant. Some P.1 genomes carry other substitutions (such as N679K, V687L and C1250F) that affect the furin cleavage site or cytoplasmic tail of spike protein. Thus, to improve viral fitness and expand its evolutionary cage, γ variant acquires mutations to finetune the furin cleavage site and cytoplasmic tail of spike protein.

Article activity feed

  1. SciScore for 10.1101/2021.10.16.464641: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The cleaned Fasta file was also uploaded onto SnapGene (version 5.3.2) for multisequence alignment via the MAFFT tool.
    SnapGene
    suggested: (SnapGene, RRID:SCR_015052)
    MAFFT
    suggested: (MAFFT, RRID:SCR_011811)
    PyMol structural modeling: The PyMol molecular graphics system (version 2.4.2, https://pymol.org/2/) from Schrödinger, Inc. was used for downloading structure files from the PDB database for further analysis and image generation.
    PyMol
    suggested: (PyMOL, RRID:SCR_000305)
    Structural images were cropped via Adobe Photoshop for further presentation through Illustrator.
    Adobe Photoshop
    suggested: (Adobe Photoshop, RRID:SCR_014199)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.