Baricitinib plus Standard of Care for Hospitalised Adults with COVID-19 on Invasive Mechanical Ventilation or Extracorporeal Membrane Oxygenation: Results of a Randomised, Placebo-Controlled Trial

This article has been Reviewed by the following groups

Read the full article

Abstract

Background

The oral, selective Janus kinase (JAK)1/JAK2 inhibitor baricitinib demonstrated efficacy in hospitalised adults with COVID-19. This study evaluates the efficacy and safety of baricitinib in critically ill adults with COVID-19 requiring invasive mechanical ventilation (IMV) or extracorporeal membrane oxygenation (ECMO).

Methods

COV-BARRIER was a global, phase 3, randomised, double-blind, placebo-controlled trial in patients with confirmed SARS-CoV-2 infection ( ClinicalTrials.gov NCT04421027 ). This addendum trial added a critically ill cohort not included in the main COV-BARRIER trial. Participants on baseline IMV/ECMO were randomly assigned 1:1 to baricitinib 4-mg (n=51) or placebo (n=50) for up to 14 days in combination with standard of care (SOC). Prespecified endpoints included all-cause mortality through days 28 and 60, and number of ventilator-free days, duration of hospitalisation, and time to recovery through day 28. Efficacy and safety analyses included the intent-to-treat and safety populations, respectively.

Findings

SOC included baseline systemic corticosteroid use in 86% of participants. Treatment with baricitinib significantly reduced 28-day all-cause mortality compared to placebo (39·2% vs 58·0%; hazard ratio [HR]=0·54 [95%CI 0·31–0·96]; p=0·030). One additional death was prevented for every six baricitinib-treated participants. Significant reduction in 60-day mortality was also observed (45·1% vs 62·0%; HR=0·56 [95%CI 0·33–0·97]; p=0·027).

Baricitinib-treated participants showed numerically more ventilator-free days (8.1 vs 5.5 days, p=0.21) and spent over 2 days less in the hospital than placebo-treated participants (23·7 vs 26·1 days, p=0·050). The rates of infections, blood clots, and adverse cardiovascular events were similar between treatment arms.

Interpretation

In critically ill patients with COVID-19 already receiving IMV/ECMO, treatment with baricitinib as compared to placebo (in combination with SOC, including corticosteroids) showed mortality HR of 0·56, corresponding to a 44% relative reduction at 60 days. This is consistent with the mortality reduction observed in less severely ill hospitalised primary COV-BARRIER study population.

Funding

Eli Lilly and Company.

Research in context

Evidence before this study

We evaluated current and prior studies assessing the efficacy and safety of interventions in patients requiring invasive mechanical ventilation (IMV) and searched current PubMed using the terms “COVID-19”, “SARS-CoV-2”, “treatment”, “critical illness”, “invasive mechanical ventilation”, “baricitinib”, and “JAK inhibitor” for articles in English, published until December 1, 2020, regardless of article type. We also reviewed the NIH and IDSA COVID-19 guidelines and reviewed similar terms on clinicaltrials.gov. When the critical illness addendum study to COV-BARRIER study was designed, there was only one open-label study of dexamethasone showing mortality benefit in hospitalised patients with COVID-19 requiring IMV. Small studies of interleukin-6 inhibitors had shown no effect and larger trials were underway. Guidelines recommended use of dexamethasone with or without remdesivir and recommended against the use of interleukin-6 inhibitors, except in a clinical trial. Overall, there were no reported double-blind, placebo-controlled phase 3 trials which included corticosteroids as part of SOC investigating the efficacy and safety of novel treatments in the NIAID-OS 7 population. Baricitinib’s mechanism of action as a JAK1 and JAK2 inhibitor was identified as a potential intervention for the treatment of COVID-19 given its known anti-cytokine properties and potential antiviral mechanism for targeting host proteins mediating viral endocytosis Data from the NIAID sponsored ACTT-2 trial showed that baricitinib when added to remdesivir improved time to recovery and other outcomes including mortality compared to placebo plus remdesivir. A numerically larger proportion of participants who received baricitinib plus remdesivir showed an improvement in ordinal scale compared to those who received placebo plus remdesivir at day 15 in participants requiring IMV (NIAID-OS score of 7) at baseline. We designed COV-BARRIER, a phase 3, global, double-blind, randomised, placebo-controlled trial, to evaluate the efficacy and safety of baricitinib in combination with SOC (including corticosteroids) for the treatment of hospitalised adults with COVID-19 who did not require mechanical ventilation (i.e., NIAID-OS 4-6). A significant reduction in mortality was found after 28 days between baricitinib and placebo (HR 0·57, corresponding to a 43% relative reduction, p=0·0018); one additional death was prevented per 20 baricitinib-treated participants. In the more severely ill NIAID-OS 6 subgroup, one additional death was prevented per nine baricitinib-treated participants (HR 0·52, corresponding to a 48% relative reduction, p=0·0065). We therefore implemented an addendum to the COV-BARRIER trial to evaluate the benefit/risk of baricitinib in the critically ill NIAID-OS 7 population and considered the sample size of 100 participants sufficient for this trial.

Added value of this study

This was the first phase 3 study to evaluate baricitinib in addition to the current standard of care (SOC), including antivirals, anticoagulants, and corticosteroids, in patients who were receiving IMV or extracorporeal membrane oxygenation at enrolment. This was a multinational, randomised, double-blind, placebo-controlled trial in regions with high COVID-19 hospitalisation rates. Treatment with baricitinib reduced 28-day all-cause mortality compared to placebo (HR 0·54, 95% CI 0·31–0·96; nominal p=0·030), corresponding to a 46% relative reduction, and significantly reduced 60-day all-cause mortality (HR 0·56, 95% CI 0·33–0·97; p=0·027); overall, one additional death was prevented per six baricitinib-treated participants. Numerical improvements in endpoints such as number of ventilator-free days, duration of hospitalisation, and time to recovery were demonstrated. The frequency of serious adverse events, serious infections, and venous thromboembolic events was similar between baricitinib and placebo, respectively.

The COV-BARRIER study overall trial results plus these COV-BARRIER addendum study data in mechanically ventilated and ECMO patients provide important information in context of other large, phase 3 randomised trials in participants with invasive mechanical ventilation at baseline. The RECOVERY study reported mortality of 29·3% following treatment with dexamethasone compared to 41·4% for usual care (rate ratio of 0·64, corresponding to a 36% relative reduction) and 49% mortality in participants who received tocilizumab compared to 51% for usual care (rate ratio of 0.93, corresponding to a 7% relative reduction). The ACTT-2 study reported 28-day mortality of 23·1% and 22·6% in the baricitinib plus remdesivir and placebo plus remdesivir groups, respectively, in this critically ill patient population; however, the primary outcome of this trial was time to recovery, so was not powered to detect a change in mortality.

Implications of all the available evidence

In this phase 3 addendum trial, baricitinib given in addition to SOC (which predominantly included corticosteroids) had a significant effect on mortality reduction by 28 days in critically ill patients, an effect which was maintained by 60 days. These data were comparable with those seen in the COV-BARRIER primary study population of hospitalised patients, but which excluded patients who required IMV or extracorporeal membrane oxygenation at enrolment. These findings suggest that baricitinib has synergistic effects to other SOC treatment modalities including remdesivir and dexamethasone. Based on the available evidence, baricitinib is a novel treatment option to decrease mortality in hospitalised, critically ill patients with COVID-19 even when started late in the disease process after steroids, mechanical ventilation, and ECMO have already been implemented.

Article activity feed

  1. SciScore for 10.1101/2021.10.11.21263897: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    EthicsIRB: All sites received approval from the authorized institutional review board.
    Consent: All participants (or legally authorized representatives) provided informed consent.
    Sex as a biological variablenot detected.
    RandomizationStudy Design and participants: The COV-BARRIER addendum trial in persons with baseline IMV/ECMO was a multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 3 trial which were enrolled from 18 centres in four countries (Argentina, Brazil, Mexico, United States).
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Despite the large effect size seen here in this well conducted, global, randomised, placebo-controlled trial, limitations exist. Limitations include the small sample size (which precludes any firm conclusions regarding other clinical outcomes such as resource utilisation or length of stay), and incomplete control of the SOC, specifically glucocorticoids. In addition, the intensity of these participants hyperinflammatory state may warrant longer durations of immunomodulation that were not part of our study design. In summary, treatment with baricitinib plus SOC (including use of corticosteroids) in critically ill COVID-19 patients already receiving IMV or ECMO at enrolment resulted in a HR of 0·56, which corresponds to a 44% relative reduction in mortality at 60 days. These results are consistent with the reduction in mortality observed in the less severely ill hospitalised patients in the primary COV-BARRIER study population and further support the use of baricitinib in hospitalised adults with COVID-19. Baricitinib used to treat critically ill persons with COVID-19 represents a novel option to reduce mortality even if the disease process has progressed to the point of already receiving steroids, mechanical ventilation, and ECMO.

    Results from TrialIdentifier: We found the following clinical trial numbers in your paper:

    IdentifierStatusTitle
    NCT04421027CompletedA Study of Baricitinib (LY3009104) in Participants With COVI…


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a protocol registration statement.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.