Longitudinal changes in home confinement and mental health implications: a 17-month follow-up study in England during the COVID-19 pandemic

This article has been Reviewed by the following groups

Read the full article

Abstract

Background

The coronavirus disease 2019 (COVID-19) pandemic has brought about significant behavioural changes, one of which is increased time spent at home. This could have important public health implications. This study aimed to explore longitudinal patterns of ‘home confinement’ (defined as not leaving the house/garden) during the COVID-19 pandemic, and the associated predictors and mental health outcomes.

Methods

Data were from the UCL COVID-19 Social Study. The analytical sample consisted of 25 390 adults in England who were followed up for 17 months (March 2020–July 2021). Data were analysed using growth mixture models.

Results

Our analyses identified three classes of growth trajectories, including one class showing a high level of persistent home confinement (the home-confined, 24.8%), one changing class with clear alignment with national containment measures (the adaptive, 32.0%), and one class with a persistently low level of confinement (the unconfined, 43.1%). A range of factors were associated with the class membership of home-confinement trajectories, such as age, gender, income, employment status, social relationships and health. The home-confined class had the highest number of depressive (diff = 1.34–1.68, p < 0.001) and anxiety symptoms (diff = 0.84–1.05, p < 0.001) at the end of the follow-up than the other two classes.

Conclusions

There was substantial heterogeneity in longitudinal patterns of home confinement during the COVID-19 pandemic. People with a persistent high level of confinement had the worst mental health outcomes, calling for special attention in mental health action plans, in particular targeted interventions for at-risk groups.

Article activity feed

  1. SciScore for 10.1101/2021.10.08.21264749: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.