A sensitized genetic screen to identify regulators of Caenorhabditis elegans germline stem cells

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

GLP-1/Notch signaling and a downstream RNA regulatory network maintain germline stem cells in Caenorhabditis elegans. In mutants lacking the GLP-1 receptor, all germline stem cells enter the meiotic cell cycle precociously and differentiate into sperm. This dramatic germline stem cell defect is called the “Glp” phenotype. The lst-1 and sygl-1 genes are direct targets of Notch transcriptional activation and functionally redundant. Whereas single lst-1 and sygl-1 mutants are fertile, lst-1 sygl-1 double mutants are sterile with a Glp phenotype. We set out to identify genes that function redundantly with either lst-1 or sygl-1 to maintain germline stem cells. To this end, we conducted forward genetic screens for mutants with a Glp phenotype in genetic backgrounds lacking functional copies of either lst-1 or sygl-1. The screens generated 9 glp-1 alleles, 2 lst-1 alleles, and 1 allele of pole-1, which encodes the catalytic subunit of DNA polymerase ε. Three glp-1 alleles reside in Ankyrin repeats not previously mutated. pole-1 single mutants have a low penetrance Glp phenotype that is enhanced by loss of sygl-1. Thus, the screen uncovered 1 locus that interacts genetically with sygl-1 and generated useful mutations for further studies of germline stem cell regulation.

Article activity feed