Using conditional inference to quantify interaction effects of socio-demographic covariates of US COVID-19 vaccine hesitancy
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
COVID-19 vaccine hesitancy has become a major issue in the U.S. as vaccine supply has outstripped demand and vaccination rates slow down. At least one recent global survey has sought to study the covariates of vaccine acceptance, but an inferential model that makes simultaneous use of several socio-demographic variables has been lacking. In this article, we present such a model using US-based survey data collected by Gallup. Our study agrees with the global survey results in some respects, but is also found to exhibit significant differences. For example, women and people aged between 25-54 were found to be more vaccine hesitant. Our conditional inference tree model suggests that trust in government, age and ethnicity are the most important covariates for predicting vaccine hesitancy, and can interact in ways that make them useful for communication-based outreach, especially if conjoined with census data. In particular, we found that the most vaccine hesitant individuals were those who identified as Black Republicans with a high school (or lower) education and lower income levels, who were involuntarily unemployed and trusted in the Trump administration.
Article activity feed
-
SciScore for 10.1101/2021.10.02.21264456: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank…
SciScore for 10.1101/2021.10.02.21264456: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-