Hierarchical Gaussian Processes and Mixtures of Experts to Model COVID-19 Patient Trajectories
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Gaussian processes (GPs) are a versatile nonparametric model for nonlinear regression and have been widely used to study spatiotemporal phenomena. However, standard GPs offer limited interpretability and generalizability for datasets with naturally occurring hierarchies. With large-scale, rapidly-updating electronic health record (EHR) data, we want to study patient trajectories across diverse patient cohorts while preserving patient subgroup structure. In this work, we partition our cohort of over 2000 COVID-19 patients by sex and ethnicity. We develop and apply a hierarchical Gaussian process and a mixture of experts (MOE) hierarchical GP model to fit patient trajectories on clinical markers of disease progression. A case study for albumin, an effective predictor of COVID-19 patient outcomes, highlights the predictive performance of these models. These hierarchical spatiotemporal models of EHR data bring us a step closer toward our goal of building flexible approaches to capture patient data that can be used in real-time systems * .
Article activity feed
-
SciScore for 10.1101/2021.10.01.462821: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: …
SciScore for 10.1101/2021.10.01.462821: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-