TES-1/Tes protects junctional actin networks under tension from self-injury during epidermal morphogenesis in the C. elegans embryo

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

During embryonic morphogenesis, the integrity of epithelial tissues depends on the ability of cells in tissue sheets to undergo rapid changes in cell shape while preventing self-injury to junctional actin networks. LIM domain-containing repeat (LCR) proteins are recruited to sites of strained actin filaments in cultured cells [1–3], and are therefore promising candidates for mediating self-healing of actin networks, but whether they play similar roles in living organisms has not been determined. Here, we establish roles for Caenorhabditis elegans TES-1/Tes, an actin-binding LCR protein present at apical junctions, during epithelial morphogenesis. TES-1::GFP is recruited to apical junctions during embryonic elongation, when junctions are under tension; in embryos in which stochastic failure of cell elongation occurs, TES-1 is only strongly recruited to junctions in cells that successfully elongate, and recruitment is severely compromised in genetic backgrounds in which cell shape changes do not successfully occur. tes-1 mutant embryos display junctional F-actin defects, and loss of TES-1 strongly enhances tension-dependent injury of junctional actin networks in hypomorphic mutant backgrounds for CCC components, suggesting that TES-1 helps to prevent self-injury of junctional actin networks during rapid cell shape change. Consistent with such role, a fragment of TES-1 containing its LIM domains localizes to stress fiber strain sites (SFSS) in cultured vertebrate cells. Together, these data establish TES-1 as a tension-sensitive stabilizer of the junctional actin cytoskeleton during embryonic morphogenesis.

Article activity feed