picd-1 , a gene that encodes CABIN1 domain-containing protein, interacts with pry-1/Axin to regulate multiple processes in Caenorhabditis elegans

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

AXIN family members control diverse biological processes in eukaryotes. As a scaffolding protein, AXIN facilitates interactions between cellular components and provides specificity to signaling pathways. Despite its crucial roles in metazoans and discovery of a large number of family members, the mechanism of AXIN function is not very well understood. The C. elegans AXIN homolog PRY-1 provides a powerful tool to identify interacting genes and downstream effectors that function in a conserved manner to regulate AXIN-mediated signaling. Previous work demonstrated pry-1 ’s essential role in developmental processes such as reproductive system, seam cells, and a P lineage cell P11.p. More recently, our lab carried out a transcriptome profiling of pry-1 mutant and uncovered the essential role of the gene in lipid metabolism, stress response, and aging. In this study, we have extended the work on pry-1 by reporting a novel interacting gene picd-1 ( p ry-1 - i nteracting C ABIN1 d omain containing). Our findings have revealed that picd-1 plays an essential role in C. elegans and is involved in several pry-1 -mediated processes including regulation of stress response and lifespan maintenance. In support of this, picd-1 expression overlaps with pry-1 in multiple tissues throughout the lifespan of animals. Further experiments showed that picd-1 inhibits CREB-regulated transcriptional coactivator homolog CRTC-1 function, which promotes longevity in a calcineurin-dependent manner. These data provide evidence for an essential role of the CABIN1 domain protein PICD-1 in mediating PRY-1 signaling in C. elegans .

Article activity feed