Functional Data Analysis: Transition from Daily Observation of COVID-19 Prevalence in France to Functional Curves

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

In this paper we use the technique of functional data analysis to model daily hospitalized, deceased, ICU cases and return home patient numbers along the COVID-19 outbreak, considered as functional data across different departments in France while our response variables are numbers of vaccinations, deaths, infected, recovered and tests in France. These sets of data were considered before and after vaccination started in France. We used some smoothing techniques to smooth our data set, then analysis based on functional principal components method was performed, clustering using k-means techniques was done to understand the dynamics of the pandemic in different French departments according to their geographical location on France map and we also performed canonical correlations analysis between variables. Finally, we made some predictions to assess the accuracy of the method using functional linear regression models.

Article activity feed

  1. SciScore for 10.1101/2021.09.25.21264106: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The clustering of functional data is one method that statisticians are always interested in and in this Section we used the K-means and Fuzzy K-means techniques whose algorithm is already in Python skfd.ml.clustering and FuzzyCMeans.
    Python
    suggested: (IPython, RRID:SCR_001658)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.