Predicting the Effectiveness of Covid-19 Vaccines from SARS-CoV-2 Variants Neutralisation Data

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Rapid and accurate prediction of Covid-19 vaccine effectiveness is crucial to response against SARS-CoV-2 variants of concern. Despite intensive research, several prediction tasks are not well supported, such as predicting effectiveness of partial vaccination, of vaccine boosters and in vaccinated subpopulations. This paper introduces a novel predictive framework to accommodate such tasks and improve prediction accuracy. It was developed for predicting the symptomatic effectiveness of the BNT162b2 (Comirnaty) and ChAdOx1 nCoV-19 (Vaxzevria) vaccines but could apply to other vaccines and effectiveness types. Direct prediction within the framework uses levels of vaccine-induced neutralising antibodies against SARS-CoV-2 variants to fit efficacy and effectiveness estimates from studies with a given vaccine. Indirect prediction uses a model fitted for one vaccine to predict the effectiveness of another. The directly predicted effectiveness of Comirnaty against the Delta variant was 44.8% (22, 69) after one and 84.6% (64, 97) after two doses, which is close to 45.6% and 85.5%, the average estimates from effectiveness studies with the vaccine. The corresponding direct predictions for Vaxzevria were 41.6% (18, 68) and 63.2% (37, 86); and the indirect predictions, from the model fitted to Comirnaty data, were 45.5% (23, 70) and 61.2% (37, 83). Both sets of predictions are comparable to the average estimates, 42.5% and 66.3%, from effectiveness studies with Vaxzevria. Further results are presented on age subgroups; prediction biases and their mitigation; and implications for vaccination policies.

Article activity feed

  1. SciScore for 10.1101/2021.09.06.21263160: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.