A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Emergence of variants of concern (VOC) with altered antigenic structures and waning humoral immunity to SARS-CoV-2 are harbingers of a long pandemic. Administration of a third dose of an inactivated virus vaccine can boost the immune response. Here, we have dissected the immunogenic profiles of antibodies from 3-dose vaccinees, 2-dose vaccinees and convalescents. Better neutralization breadth to VOCs, expeditious recall and long-lasting humoral response bolster 3-dose vaccinees in warding off COVID-19. Analysis of 171 complex structures of SARS-CoV-2 neutralizing antibodies identified structure-activity correlates, revealing ultrapotent, VOCs-resistant and broad-spectrum antigenic patches. Construction of immunogenic and mutational heat maps revealed a direct relationship between “hot” immunogenic sites and areas with high mutation frequencies. Ongoing antibody somatic mutation, memory B cell clonal turnover and antibody composition changes in B cell repertoire driven by prolonged and repeated antigen stimulation confer development of monoclonal antibodies with enhanced neutralizing potency and breadth. Our findings rationalize the use of 3-dose immunization regimens for inactivated vaccines.

One sentence summary

A third booster dose of inactivated vaccine produces a highly sifted humoral immune response via a sustained evolution of antibodies capable of effectively neutralizing SARS-CoV-2 variants of concern.

Article activity feed

  1. SciScore for 10.1101/2021.09.02.21261735: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: We found the following clinical trial numbers in your paper:

    IdentifierStatusTitle
    NCT04352608Active, not recruitingSafety and Immunogenicity Study of Inactivated Vaccine for P…


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on pages 20 and 22. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.