C. elegans enteric motor neurons fire synchronized action potentials underlying the defecation motor program

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The C. elegans nervous system was thought to be strictly analog, constituted solely by graded neurons. We recently discovered neuronal action potentials in the sensory neuron AWA; however, the extent to which the C. elegans nervous system relies on analog or digital neural signaling and coding is unclear. Here we report that the enteric motor neurons AVL and DVB fire all-or-none calcium-mediated action potentials that play essential roles in the rhythmic defecation behavior in C. elegans . Both AVL and DVB synchronously fire giant action potentials to faithfully execute all-or-none expulsion following the intestinal pacemaker. AVL fires unusual compound action potentials with each positive calcium-mediated spike followed by a potassium-mediated negative spike. The depolarizing calcium spikes in AVL are mediated by a CaV2 calcium channel UNC-2, while the negative potassium spikes are mediated by a repolarization-activated potassium channel EXP-2. Whole-body behavior tracking and simultaneous neural imaging in free-moving animals suggest that action potentials initiated in AVL in the head propagate along its axon to the tail and activate DVB through the INX-1 gap junction. Synchronized action potential spikes between AVL and DVB, as well as the negative spike and long-lasting afterhyperpolarization in AVL, play an important function in executing expulsion behavior. This work provides the first evidence that in addition to sensory coding, C. elegans motor neurons also use digital coding scheme to perform specific functions including long-distance communication and temporal synchronization, suggesting further, unforeseen electrophysiological diversity remains to be discovered in the C. elegans nervous system.

Article activity feed