The obesity-linked human lncRNA AATBC regulates adipocyte plasticity by stimulating mitochondrial dynamics and respiration

This article has been Reviewed by the following groups

Read the full article

Listed in

Log in to save this article

Abstract

Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity-associated disorders, the activation of thermogenic brown and beige adipocytes is linked to improved cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this adipocyte plasticity could help improving energy balance and weight loss. Here, we show that the long non-coding RNA (lncRNA) Apoptosis associated transcript in bladder cancer (AATBC) is a human-specific regulator of adipocyte plasticity. Searching for new human lncRNAs implicated in adipocyte biology we compared transcriptional profiles of human adipose tissues and cultured adipocytes and discovered that AATBC was enriched in thermogenic conditions. Using primary human adipocytes and immortalized human adipocytes we found that gain-of-function of AATBC enhanced the thermogenic phenotype whereas loss-of-function diminished this effect. The AATBC-mediated increase in mitochondrial respiration was linked to a more fragmented mitochondrial network and vice versa. While we found that AATBC is predominantly located in the nucleus, its effect on global transcription was only marginal. As AATBC is specific to humans, we expressed AATBC in adipose tissue of mice to study its systemic impact, which led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, body mass index and other measures of metabolic health. In conclusion, AATBC is a novel obesity-linked regulator of adipocyte plasticity and mitochondrial function in humans.

Article activity feed

  1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Reply to the reviewers

    Reviewer #1:

    Major comments:

    • The relevance of these findings to human biology remains unclear. In Figures 1-4, the authors present data showing that AATBC is enriched in thermogenic fat, and they argue that it regulates thermogenesis and mitochondrial biology. However, in Figures 6-7, where the authors look at AATBC in different human cohorts, they actually find that it is enriched in visceral fat, which is thought of as being the least thermogenic fat depot. The authors do not explain this seeming paradox, and thus, the role of AATBC in fat remains uncertain. *

    RESPONSE: We thank the reviewer for this comment and have clarified the discussion to address this point. It has been recently shown (PMID: 28529941) that the pattern of browning genes in human white adipose tissue depots is actually inverted to mice, making visceral adipose tissue in humans actually more thermogenic than subcutaneous. This aligns well with our findings of AATBC is predominantly expressed in thermogenic adipose tissue.

    • In many of the experiments, insufficient controls are provided, or the data are not at all convincing. For example:*

    (a) The first four figures rely on in vitro adipocyte models, but the authors do not present data to show these cells differentiate properly and equally. This is especially relevant for the gain and loss of function studies.

    RESPONSE: We agree with the reviewer that equal differentiation is necessary for in vitro adipocyte models. Therefore, we added Oil-red-O stainings and the corresponding quantifications to Supp. Fig. 4 (see below) for the differentiation of hMADS in the absence of AATBC. We also want to emphasize, that the expression levels of PLIN1, a surrogate marker for differentiation was unchanged in our experiments, as already shown in the initial draft of the manuscript. On top of that, in all experiments presented in the original draft of the manuscript, AATBC gene expression was only altered in mature adipocytes.

    (b) Some of the experiments in Figure 1 (K-L) seem to only show an N of 1.

    RESPONSE: Figure 1 highlights a screening process to find new lncRNA regulated during thermogenesis. The forskolin sample was included to achieve an additional dimension in the filtering process. The displayed values in K&L demonstrate the validity of the sample. The validation of AATBC as a target was performed with statistical power in the work displayed in the following figures.

    (c) The RNAscope data in Figure 2 is not at all convincing for nuclear localization

    RESPONSE: We respectfully disagree. In our opinion, the RNAScope is convincing for nuclear localization of the lncRNA. However, we have repeated the experiments with different probes that strengthen our data (see figure for the reviewer)

    (d) The ASO mediated knockdown of AATBC in Figure 3 only reduced expression slightly. A more complete knockdown or deletion may elicit a stronger phenotype.

    RESPONSE: We thank the reviewer for the feedback. We have repeated the knockdown experiments but were not able to reduce the expression further, even after designing additional ASOs. However, already with current approach, the reduction in AATBC expression elicited a phenotype, highlighting the importance of AATBC in a dose-dependent manner.

    (e) In Figure 4, OPA1 is shown as a single band in panel E and a doublet in panel N. Based on this, are the authors certain they are detecting OPA,1 or could this be a nonspecific band?

    RESPONSE: We thank the reviewer for this comment. Protein extraction has been performed at different research institutes with slightly different buffers. Multiple bands (cleaved/uncleaved) have been described for OPA1 in the past, therefore we are certain that the correct protein has been detected.

    *(f) The correlations in Figure 6 I-L and Figure 7 do not include any statistical analysis. *

    REPONSE: For better readability, the statistical analysis is being mentioned in the figure legend. The reviewer might have overlooked this information.

    • The gain of function studies in mice are problematic. The authors have performed a large amount of invasive studies in a short period of time. The animals will undoubtedly lose weight after each study and with insufficient time to recover, this could influence the subsequent studies.*

    RESPONSE: These general concerns are valid, but all controls are in place and the animals gained weight during the experiments, as one would have been expected with animals of that age (see below).

    *In addition, since the authors present data in Figures 1-4 arguing that AATBC overexpression is associated with increased thermogenesis, it is surprising that the authors never looked at this in Figure 5 (aside from measuring Ucp1 mRNA). It would be interesting to measure energy expenditure by indirect calorimetry and cold tolerance. *

    RESPONSE: We agree with the reviewer on this point but are due to animal protocol limitations in conjunction with the viral approach are unable to perform these experiments.

    • The authors do not provide any mechanistic insights into how AATBC may be acting.*

    RESPONSE: Certainly, more mechanistic insight into the direct mode of action of AATBC would be interesting. To address this point, over the past year we performed multiple attempts to perform pulldown of AATBC using the ChIRP technology. However, we were unable to achieve a sufficient enrichment, which would have allowed us to give further information about direct interaction partners of AATBC. However, we believe that our data regarding mitochondrial dynamics, which we now also have confirmed in in vivo experiments, explain the connection of AATBC and thermogenicity. In future, we aim to work on this point further but for multiple reasons have decided to close this chapter here.

    Minor comments:

    • The introduction is rather long and would benefit from being condensed.*

    RESPONSE: We have edited the text for better readability.

    * *

    Reviewer #2:

    Major Comments:

    • The key conclusion that AATBC is a novel obesity-linked regulator of adipocyte plasticity is made relatively clear with the comparison between various stages of adipocytes and the loss and gain of function with AATBC. - Figure 1 H and J do not seem to be consistent with the data in Figure 1F in LINC00473 level-There is no difference in Control vs NE in the heatmap but in Figure1J, the difference seems to be quite obvious; Figure 1K does not seem to be consistent with AATBC level-The measurement in Control VS Fsk group showed no difference in AATBC in heatmap, but in Figure K, there seem to be a dramatic increase. Therefore, the claims that there is a difference in these two lncRNA expression in these cell groups needs further clarification. *

    RESPONSE: To combine the different approaches to identify novel lncRNA into one heatmap the data need to be normalized over experiments. As the fold change of the expression of AATBC in BAT compared to WAT (on average ~100x) is higher than with forskolin (~4x), this will stand out in the heatmap and will to some extent overshadow the smaller fold changes. The same holds true for LINC00473, which is drastically induced with forskolin, which to some extent masks the higher expression in the other approaches. Therefore, we decided to show both the heatmap to represent the general approach and the “zoomed in” versions to show the consistent increases. We are confident this clarifies the issue.

    • Figure 4H and I, the difference in the representative immunoblot seem to be minimal and inconsistent with the decrease shown in the bar graph. *

    RESPONSE: We agree with the reviewer and have removed the claim from our manuscript.

    • In Figure 5, after overexpressing human AATBC in murine adipose tissue , is it possible to look at the mitochondria changes that were seen before in cell lines? If there are similar changes in murine adipose tissue, then it would prove the changes in vitro hold up with the in vivo model. But if the mitochondria changes were not seen, then it would indicate the changes in leptin, triglyceride levels may due to other mechanisms. The length of the suggested experiment to look into the mitochondrial differences in mice may vary depending on whether there are preserved samples from previous experiments. If there are, then the time period would be couple of weeks for immunblot and analysis. If there are no samples preserved, then the estimated period for the suggested experiments may be around 1.5 to 2 months at least .*

    RESPONSE: We thank the reviewer for the suggestion. We performed Western Blot analysis on the tissues from the in vivo study and have included them in Fig. 5, further strengthening the link between AATBC and mitochondrial dynamics (please see figure on the right).

    • The data are convincing overall in that the replicates are clearly marked with dots in many figures. Some immune blot and expression level are inconsistent with other data showing the same results however. *

    RESPONSE: We thank the reviewer and have removed the necessary quantifications.

    • Figure 6 and 7 are provocative and significant, reporting strong associations of AATBC with well-known markers of metabolism in adipocytes. The sex difference for adiponectin and AATBC expression is particularly intriguing. Further discussion of this point would be interesting. However, there is no information provided about the medication status of the obese subjects that were consented for samples used in the analysis. Specifically, many of the obese subjects (mean BMI 45 or more with a range going up to 97.3) would be expected also to have metabolic diagnoses and to be treated with numerous medications, including Metformin, GLP1 agonists, Orlistat, Liraglutide, Bupropion/Naltrexone and combinations. It is unreasonable to ignore possible effects of major medications on AATBC expression. Please comment on the strengths and weaknesses of the analysis that ignores medications, or if some annotations of clinical data are available, perhaps to explain outliers in the plots, please discuss. *

    RESPONSE: We thank the reviewer for this suggestion. Unfortunately, we are unable to exclude additional diagnoses and medication of our patients due to the points the reviewer stated. However, given the large size of the cohorts we are confident that such effects are being compensated for. We have added a part on weaknesses of the study in the discussion.

    Minor Comments:

    • The labeling of figure 2 A-K is not clear because the use of the same color of bars is easily misunderstood as the same source of cells, but it is in fact not. For example, the grey color that appeared in 2B and 2C are not the same source but can be misunderstood.

    RESPONSE: The coloring of Fig.2A&G has been changed.

    • Figure 3 ASO-AATBC has two repeats #1 and #2, and over-expression of AATBC has one, even though there are enough repeats. It would be less confusing to present all of the repeats in ASO_AATBC together in one bar.*

    RESPONSE: The two different ASO target different areas of AATBC. In line with general guidelines for ASO use, those are not pooled but used separately, which is why the results are also split up. As the overexpression is additional genomic information of AATBC, it is impossible to use different variants in this case, therefore only one bar for overexpression is shown.

    • The experimental outline can be a bit more detailed and explain some of the words like Thermo versus Browning.*

    RESPONSE: The manuscript has been revised regarding this point.

    • Some of the panels in Figure 7 could be put into supplementary if space is at a premium, and present the representative graph would be enough*

    RESPONSE: We think that all our data of Fig. 7 warrants enough attention to be considered in a main figure, but if space is sparse, we are very happy to oblige. We would kindly ask the editors for input on this matter.

    * *

    Reviewer #3:

    • Throughout the study, the data provided are mainly correlative and in some cases not robust. In Fig. 2, AATBC expression is described to be elevated in the so-called "thermogenic condition", which contained prolonged PPARg agonist treatment (rosiglitazone) known to promote adipogenesis. Consistent with this notion, adipogenic markers, such as PLIN1 and FABP4, are higher in "thermogenic adipocytes" (Suppl Fig. 2). As such, the result may only suggest that AATBC has higher expression in mature adipocytes vs pre-adipocytes. *

    RESPONSE: We thank the reviewer for the suggestion. We have added Oil-Red-O-Stainings to Suppl. Fig. 2 to show unchanged lipid content upon modulation of AATBC gene expression, which can be seen as a surrogate for differentiation. Concerning the use of rosiglitazone as a browning agent, we want to emphasize that rosiglitazone was used during the entirety of differentiation until day 9, where it was removed in the “non-thermogenic” group. At this point we already observe fully differentiated adipocytes. This is an established protocol. Furthermore, the data is in line with using norepinephrine or forskolin as a short-term inducer of browning, making it very likely that the effect seen is due to the “more thermogenic” character of the adipocytes.

    • Along the same vein, whether and how AATBC affects adipogenesis is unclear. Suppl Fig. 3H and 3L (misplaced as Suppl Fig. 4) show the adipocyte differentiation marker FABP4 is down-regulated by both ASO- and AV-AATBC. Since mitochondrial respiration (and other parameters including UCP1 expression) is tightly linked to adipogenic efficiency, the authors need to address whether these manipulations affect adipocyte differentiation. *

    RESPONSE: We agree with the reviewer that differences in differentiation capacity would falsify our data on mitochondrial dynamics. We have added Oil-Red-O-Staining to Suppl. Fig. 2 to show that no significant difference in lipid content exists during modulation of AATBC gene expression, which can be seen as a surrogate for differentiation. Furthermore, in all experiments presented in the manuscript, the modulation of AATBC occurs in already fully differentiated adipocytes. Accordingly, we are confident that AATBC does not influence differentiation but mainly acts through the modulation of mitochondrial dynamics.

    • The data in Fig. 4 supporting a role for AATBC in regulating mitochondrial dynamics are superficial and not robust. Fig. 4A/4J do not have high enough resolution to provide accurate assessment of the mitochondrial network.*

    RESPONSE: We respectfully disagree with the reviewer on this point. State of the art methods and algorithms were used to image and analyze the mitochondrial network. Furthermore, we have used multiple established markers of mitochondrial dynamics in western blot analysis to further strengthen our assessments of the immunofluorescence. In summary, we feel like have given enough evidence for an accurate assessment of the mitochondrial network.

    • The level of loading control TUBB is clearly lower in siAATBC in Fig. 4H. In addition, OPA1 should have multiple isoforms and Fig. 4E/4N show inconsistent patterns. As such, mitochondrial dynamics is not likely an underlying mechanism. *

    RESPONSE: We agree with the reviewer on the assessment of the expression of complex 5 and have removed this claim from the manuscript. Regarding the expression of OPA1, protein extraction has been performed at different research institutes with slightly different buffers. Multiple bands (cleaved/uncleaved) have been described for OPA1 in the past, therefore we are certain that the correct protein has been detected.

    • Notably, RNAseq data in Suppl Fig. 4 (misplaced as Suppl Fig. 3) seem to indicate that AATBC over-expression promotes TG synthesis, while AATBC knockdown modulates cell death. The authors should consider exploring the leads from RNAseq analysis?*

    RESPONSE: We thank the reviewer for the feedback. The small number of altered genes in the RNASeq make us believe in a rather post-transcriptional role of AATBC. We investigated cell death and oxidative stress response as GO terms were highlighted in the analysis, but we were unable to detect any differences in the absence of AATBC, pointing to a minimal effect on transcriptional level (See figure below for the reviewers).

    • In Fig. 5, the AV-AATBC transduction in WAT/BAT is localized, transient and not homogeneous. Not surprisingly, this manipulation does not produce any robust effects. The difference in circulating leptin/leptin expression appears to be driven by 4-5 mice in the control group (Fig. 5H/5N). The correlation data in Fig. 6 and Fig. 7, although relevant, do not provide additional mechanistic insights. Unfortunately, the efforts in Fig. 5-7 fail to lead to information related to the biological function of adipose AATBC.*

    RESPONSE: We agree with the reviewer on the limitations of the AV model, but we have performed these experiments with the highest technical standard. As the reviewer states, the overexpression, especially in WAT, has different magnitudes depending on the individual mouse, but the overexpression is present and consistently high in every animal. We would expect even bigger alterations in a genetic model, which, however, is beyond the scope of this first manuscript on AATBC in adipocytes. We are disappointed that the reviewer does not value the human data presented, as it very strongly hints to a relevant function of our human lncRNA in vivo by robust correlations with established biomarkers mirroring the effects seen in vitro and in the mouse model. A limitation of human studies is in virtually every case that it is based on correlations, as manipulation of gene expression, which would be necessary to delineate a biological process as requested by the reviewer, is not possible in humans. We do not concur on dismissing our human data on that behalf.

  2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #3

    Evidence, reproducibility and clarity

    In the current work, the authors have characterized a human IncRNA AATBC whose expression is up-regulated in conditions favoring a "thermogenic phenotype" of fat cells. Results derived from transient knockdown/over-expression approaches indicate that AATBC may play a role in modulating mitochondrial functions. In addition, gene expression analyses have demonstrated that AATBC is positively correlated with thermogenic genes, such as UCP-1 and PGC-1a and negatively correlated with adipogenic genes, including PPARg, FABP4 and Leptin in humans.

    The association between AATBC and BMI is of potential interest. However, restricted by the limitations of the employed approaches, the current study falls short of robust evidence supporting a role for AATBC in adipocyte plasticity and mitochondrial dynamics/respiration (and certainly a link between the two events). A substantial amount of work would be needed to tie up loose ends for a cohesive study with mechanistic insights.

    Specific comments:

    1. Throughout the study, the data provided are mainly correlative and in some cases not robust. In Fig. 2, AATBC expression is described to be elevated in the so-called "thermogenic condition", which contained prolonged PPARg agonist treatment (rosiglitazone) known to promote adipogenesis. Consistent with this notion, adipogenic markers, such as PLIN1 and FABP4, are higher in "thermogenic adipocytes" (Suppl Fig. 2). As such, the result may only suggest that AATBC has higher expression in mature adipocytes vs pre-adipocytes.
    2. Along the same vein, whether and how AATBC affects adipogenesis is unclear. Suppl Fig. 3H and 3L (misplaced as Suppl Fig. 4) show the adipocyte differentiation marker FABP4 is down-regulated by both ASO- and AV-AATBC. Since mitochondrial respiration (and other parameters including UCP1 expression) is tightly linked to adipogenic efficiency, the authors need to address whether these manipulations affect adipocyte differentiation.
    3. The data in Fig. 4 supporting a role for AATBC in regulating mitochondrial dynamics are superficial and not robust. Fig. 4A/4J do not have high enough resolution to provide accurate assessment of the mitochondrial network. The level of loading control TUBB is clearly lower in siAATBC in Fig. 4H. In addition, OPA1 should have multiple isoforms and Fig. 4E/4N show inconsistent patterns. As such, mitochondrial dynamics is not likely an underlying mechanism. Notably, RNAseq data in Suppl Fig. 4 (misplaced as Suppl Fig. 3) seem to indicate that AATBC over-expression promotes TG synthesis, while AATBC knockdown modulates cell death. The authors should consider exploring the leads from RNAseq analysis.
    4. In Fig. 5, the AV-AATBC transduction in WAT/BAT is localized, transient and not homogeneous. Not surprisingly, this manipulation does not produce any robust effects. The difference in circulating leptin/leptin expression appears to be driven by 4-5 mice in the control group (Fig. 5H/5N). The correlation data in Fig. 6 and Fig. 7, although relevant, do not provide additional mechanistic insights. Unfortunately, the efforts in Fig. 5-7 fail to lead to information related to the biological function of adipose AATBC.

    Significance

    Thermogenic adipocytes are thought to be a druggable target to combat obesity and related metabolic diseases. The current study aims to identify genes associated with thermogenic capacity in human adipocytes. To this end, the authors have characterized a human IncRNA AATBC whose expression is up-regulated by thermogenic stimulations in cultured adipocytes. Of potential interest is the association between adipose AATBC expression and BMI in human samples.

    Reviewer's field of expertise: metabolic regulation, obesity and related metabolic diseases, molecular physiology.

    Referee Cross-commenting

    I think there is a good consensus about the strengths and weaknesses of the study. My comments were very similar to those of reviewer 1. My view is the authors did not provide sufficient evidence to support their claims. Some of the data are also not robust enough to reach meaningful conclusions.

  3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #2

    Evidence, reproducibility and clarity

    This investigation deals with a significant problem: how to discover and understand the signals that regulate white and brown or beige adipogenesis, which is central to energy balance. New approaches to promote brown, thermogenic adipogenesis have been considered as potential metabolic therapies to combat the current epidemic of obesity and obesity-related complications. Interestingly, the authors have identified a long non-coding RNA that associates with the thermogenic phenotype, and then through functional studies offer strong evidence that this lncRNA (AATBC) has potential as a regulator of adipocyte plasticity. The investigation is rigorously conducted, novel and important. The report may be suitable for publication upon completion of the improvements suggested here.

    Major Comments:

    • The key conclusion that AATBC is a novel obesity-linked regulator of adipocyte plasticity is made relatively clear with the comparison between various stages of adipocytes and the loss and gain of function with AATBC.
    • Figure 1 H and J do not seem to be consistent with the data in Figure 1F in LINC00473 level-There is no difference in Control vs NE in the heatmap but in Figure1J, the difference seems to be quite obvious; Figure 1K does not seem to be consistent with AATBC level-The measurement in Control VS Fsk group showed no difference in AATBC in heatmap, but in Figure K, there seem to be a dramatic increase. Therefore, the claims that there is a difference in these two lncRNA expression in these cell groups needs further clarification.
    • Figure 4H and I, the difference in the representative immunoblot seem to be minimal and inconsistent with the decrease shown in the bar graph.
    • In Figure 5, after overexpressing human AATBC in murine adipose tissue, is it possible to look at the mitochondria changes that were seen before in cell lines? If there are similar changes in murine adipose tissue, then it would prove the changes in vitro hold up with the in vivo model. But if the mitochondria changes were not seen, then it would indicate the changes in leptin, triglyceride levels may due to other mechanisms.
    • The length of the suggested experiment to look into the mitochondrial differences in mice may vary depending on whether there are preserved samples from previous experiments. If there are, then the time period would be couple of weeks for immunblot and analysis. If there are no samples preserved, then the estimated period for the suggested experiments may be around 1.5 to 2 months at least.
    • The data are convincing overall in that the replicates are clearly marked with dots in many figures. Some immune blot and expression level are inconsistent with other data showing the same results however.
    • Figure 6 and 7 are provocative and significant, reporting strong associations of AATBC with well-known markers of metabolism in adipocytes. The sex difference for adiponectin and AATBC expression is particularly intriguing. Further discussion of this point would be interesting.

    However, there is no information provided about the medication status of the obese subjects that were consented for samples used in the analysis. Specifically, many of the obese subjects (mean BMI 45 or more with a range going up to 97.3) would be expected also to have metabolic diagnoses and to be treated with numerous medications, including Metformin, GLP1 agonists, Orlistat, Liraglutide, Bupropion/Naltrexone and combinations. It is unreasonable to ignore possible effects of major medications on AATBC expression. Please comment on the strengths and weaknesses of the analysis that ignores medications, or if some annotations of clinical data are available, perhaps to explain outliers in the plots, please discuss.

    Minor Comments:

    • The labeling of figure 2 A-K is not clear because the use of the same color of bars is easily misunderstood as the same source of cells but it is in fact not. For example, the grey color that appeared in 2B and 2C are not the same source but can be misunderstood.
    • Figure 3 ASO-AATBC has two repeats #1 and #2, and over-expression of AATBC has one, even though there are enough repeats.
    • It would be less confusing to present all of the repeats in ASO_AATBC together in one bar.
    • The experimental outline can be a bit more detailed and explain some of the words like Thermo versus Browning.
    • Some of the panels in Figure 7 could be put into supplementary if space is at a premium, and present the representative graph would be enough.

    Significance

    • Adipocyte plasticity and physiology has been linked to a lot of diseases such as diabetes, cardiovascular diseases and cancer. Therefore the conclusion coming from this paper reveals other aspects when looking at adipocytes in healthy or disease conditions-long noncoding RNA. lncRNA can be seen as a biomarker of an indicator of the physiology of adipose tissue, and may be able to account for changes that cannot be explained by cell genome analysis. There has been a surge of interest in RNA containing in exosomes, which serves as vesicles that travel between cells. Some studies have also shown that the content of exosomes arrives at the nucleolus of the recipient cell. The overlap of the location of exosomal RNA and lncRNA is a representative of a whole set of regulation of genes and expressions that was not noticed before.

    • The audience of the paper may be interested in the outcome of the changes of mitochondria change in the context of disease such as obesity, diabetes, etc. For example, if there is a casual relationship between AATBC level and the status of obesity.

    Referee Cross-commenting

    Thank you, I concur.

  4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #1

    Evidence, reproducibility and clarity

    The manuscript by Giroud et al. describes a role for the human-specific lncRNA AATBC in adipocyte plasticity. By overlaying datasets from tissues (white vs. brown fat) and cell lines (treated with norepinephrine or forskolin), the authors identified a limited number of lncRNAs demonstrating coordinate regulation. One of these lncRNAs is AATBC, which has not previously been studied in adipocytes. The authors show that AATBC is enriched in thermogenic adipose tissues/cells. They then perform gain and loss of function studies in cellular models and argue that AATBC is involved in thermogenesis and appears to be associated with the state of the mitochondrial network. The authors then explain that modulating AATBC has minimal effects on global transcription, and so they argue it mainly works via post-transcriptional mechanisms, though these are not defined. The authors then expressed AATBC in adipose tissue of mice and observed a decrease in plasma leptin levels and an increase in triglyceride levels, while other metabolic phenotypes were unchanged. Finally, the authors analyzed associations between adipose tissue AATBC and a variety of metabolic parameters in a few human cohorts. While the identification of a novel lncRNA involved in adipocyte biology and systemic metabolism would be of great interest, the data presented here does not convincingly support the conclusions made. Substantial additional experiments are needed to support the claims in this paper.

    Major comments:

    1. The relevance of these findings to human biology remains unclear. In Figures 1-4, the authors present data showing that AATBC is enriched in thermogenic fat, and they argue that it regulates thermogenesis and mitochondrial biology. However, in Figures 6-7, where the authors look at AATBC in different human cohorts, they actually find that it is enriched in visceral fat, which is thought of as being the least thermogenic fat depot. The authors do not explain this seeming paradox, and thus, the role of AATBC in fat remains uncertain.
    2. In many of the experiments, insufficient controls are provided or the data are not at all convincing. For example: (a) The first four figures rely on in vitro adipocyte models, but the authors do not present data to show these cells differentiate properly and equally. This is especially relevant for the gain and loss of function studies. (b) Some of the experiments in Figure 1 (K-L) seem to only show an N of 1. (c) The RNAscope data in Figure 2 is not at all convincing for nuclear localization. (d) The ASO mediated knockdown of AATBC in Figure 3 only reduced expression slightly. A more complete knockdown or deletion may elicit a stronger phenotype. (e) In Figure 4, OPA1 is shown as a single band in panel E and a doublet in panel N. Based on this, are the authors certain they are detecting OPA1 or could this be a nonspecific band?( f) The correlations in Figure 6 I-L and Figure 7 do not include any statistical analysis.
    3. The gain of function studies in mice are problematic. The authors have performed a large amount of invasive studies in a short period of time. The animals will undoubtedly lose weight after each study, and with insufficient time to recover, this could influence the subsequent studies. In addition, since the authors present data in Figures 1-4 arguing that AATBC overexpression is associated with increased thermogenesis, it is surprising that the authors never looked at this in Figure 5 (aside from measuring Ucp1 mRNA). It would be interesting to measure energy expenditure by indirect calorimetry and cold tolerance.
    4. The authors do not provide any mechanistic insights into how AATBC may be acting. The manuscript contains some potentially interesting observations, but without some mechanistic insight, it is hard to understand how AATBC might regulate adipocyte plasticity.

    Minor comments:

    1. The introduction is rather long and would benefit from being condensed.

    Significance

    This manuscript may represent an interesting advance in terms of highlighting a new lncRNA with a role in adipocyte biology. These findings would be of broad interest to researchers interested in obesity and metabolism. I myself am in this field of research, so feel quite qualified to evaluate this manuscript. However, as noted above, major concerns would need to be addressed in order to justify the conclusions made here.