A Partition-Based Group Testing Algorithm for Estimating the Number of Infected Individuals

This article has been Reviewed by the following groups

Read the full article

Abstract

The dangers of COVID-19 remain ever-present worldwide. The asymptomatic nature of COVID-19 obfuscates the signs policy makers look for when deciding to reopen public areas or further quarantine. In much of the world, testing resources are often scarce, creating a need for testing potentially infected individuals that prioritizes efficiency. This report presents an advancement to Beigel and Kasif’s Approximate Counting Algorithm (ACA). ACA estimates the infection rate with a number of tests that is logarithmic in the population size. Our newer version of the algorithm provides an extra level of efficiency: each subject is tested exactly once. A simulation of the algorithm, created for and presented as part of this paper, can be used to find a linear regression of the results with R 2 > 0.999. This allows stakeholders and members of the biomedical community to estimate infection rates for varying population sizes and ranges of infection rates.

Article activity feed

  1. SciScore for 10.1101/2021.07.27.21260924: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.