SARS-CoV-2 envelope-protein corruption of homeostatic signaling mechanisms in mammalian cells

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

During a SARS-CoV2 infection, host cells produce large amounts of the viral envelope protein (Ep-CoV2). Ep-CoV2 is partially inserted into the membrane of nascent viral particles and into cellular membranes. To mimic the pathophysiological impact of the cellular protein fraction, Ep-CoV2 was overexpressed in mammalian cells and effects on key signaling parameters were monitored. By tagging with green fluorescent protein (GFP), we found that Ep-CoV2 protein is mostly present in the endoplasmic reticulum with additional trace amounts in the plasma membrane. We observed that wild-type Ep-CoV2 and, to a lesser extent, its mutants (N15A, V25F) corrupted some of the most important homeostatic mechanisms in cells. The same was observed with isolated transmembrane domains of the protein. The Ep-CoV2-evoked elevation of intracellular Ca 2+ and pH as well as the induced membrane depolarization produced by the presence of the protein interfere with major signal transduction cascades in host cells. These functions of Ep-CoV2, which likely contribute to the pathogenesis of the viral protein, result from the ion-channel activity of the viral protein. Two independent assays, a functional reconstitution of Ep-CoV2 protein in artificial membranes and a rescue of K + -deficient yeast mutants, confirm that Ep-CoV2 generates a cation-conducting channel with a low unitary conductance and a complex ion selectivity. The data presented here suggest that specific channel function inhibitors of Ep-CoV2 can provide cell protection and virostatic effects.

Article activity feed

  1. SciScore for 10.1101/2021.06.16.448640: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Cell Line Authenticationnot detected.

    Table 2: Resources

    Experimental Models: Cell Lines
    SentencesResources
    Patch-clamp experiments: On the day of the experiment, transfected HEK293 or A549 were separated by trypsinization, seeded at low density on 10*10 mm coverslips, and then incubated for 2 to 4 hours to allow adhering of cells on the glass surface.
    HEK293
    suggested: None
    A549
    suggested: None
    Experimental Models: Organisms/Strains
    SentencesResources
    Transformation of yeast cells: The K+ uptake deficient S. cerevisiae strains PLY240 (MATa his3Δ200 leu2-3,112 trp1Δ901 ura3-52 suc2Δ9 trk1Δ51 trk2Δ50::lox-kanMX-lox) [55] was transformed with the constructed pYES2sh plasmids using Frozen-EZ Yeast Transformation II kit (Zymo Research Europe GmbH, Freiburg, Germany) according to manufacturer’s instructions.
    trp1Δ901 ura3-52 suc2Δ9 trk1Δ51 trk2Δ50::lox-kanMX-lox
    suggested: None
    Recombinant DNA
    SentencesResources
    For in vitro protein expression the Ep-CoV2 DNA fragment was amplified via PCR using primer pair 1 (table 1) and subsequently cloned into a modified pET24 vector (pET24Δlac) in which the lac-operator and the ribosome binding site (RBS) were replaced by the 5’-UTR of the in vitro expression vector pEXP-5-CT/TOPO (Invitrogen, Karlsbad, CA, USA).
    pET24
    suggested: RRID:Addgene_73142)
    pEXP-5-CT/TOPO
    suggested: None
    For cloning, pET24Δlac was first linearized with the restriction enzymes NdeI and SalI.
    pET24Δlac
    suggested: None
    The DNA fragment encoding the desired FLAG-TEV tag was generated via PCR using primer pair 2 (table 1) and subsequently cloned into the NdeI restriction site of pET24Δlac/Ep-CoV2 using NEBuilder® HiFi DNA Assembly (NEB, Ipswich, MA, USA).
    pET24Δlac/Ep-CoV2
    suggested: None
    These fragments were subsequently inserted into a modified pYES2 shuttle vector (pYES2sh) in which the original PGAL1 promoter of pYES2 (Invitrogen, Karlsbad, CA, USA) was replaced by the methionine repressible PMET3 promoter.
    pYES2
    suggested: RRID:Addgene_86470)
    For this purpose, the coding sequence of KcvPBCV-1 was amplified with appropriate overhangs using primer pair 5 (table1) and subsequently cloned into pYES2sh as described above.
    pYES2sh
    suggested: None
    For expression in mammalian cells, Ep-CoV2 and Ep-CoV2™ were cloned into pEGFP-N2 which contains the eGFP sequence for generating C-terminal eGFP-tags.
    pEGFP-N2
    suggested: RRID:Addgene_78822)
    After reaching approximately 80% confluence mammalian cells were (co-)transfected in a 35 mm petri dish with 1 µg of the plasmid carrying the gene of interest and (if necessary) 1 µg of empty pEGFP-N2 or empty pIRES2-mRuby3 to enable identification of transfected cells via eGFP or mRuby3 fluorescence, respectively. pIRES2-mRuby3 was generated by replacing the sequence encoding for the green fluorescent protein eGFP in pIRES2-eGFP by a DNA sequence encoding for the red fluorescent protein mRuby3.
    pIRES2-mRuby3
    suggested: None
    pIRES2-eGFP
    suggested: RRID:Addgene_14998)
    Software and Algorithms
    SentencesResources
    The capillaries were coated at tapper with Sigmacote® (Merck KgaA, Darmstadt, Germany) and baked after pulling at 65°C for 45 min.
    Sigmacote®
    suggested: None
    Data was collected with PatchMaster (HEKA Elektronik, Lambrecht, Germany) and analyzed with FitMaster (HEKA Elektronik, Lambrecht, Germany)
    PatchMaster
    suggested: (Patchmaster, RRID:SCR_000034)
    FitMaster
    suggested: (FITMASTER, RRID:SCR_016233)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.