What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

The COVID-19 epidemic, which started in late December 2019 and rapidly spread throughout the world, was accompanied by an unprecedented release of reported case data. Our objective is to propose a fresh look at this data by coupling a phenomenological description to the epidemiological dynamics.

Methods

We use a phenomenological model to describe and regularize the data. This model can be matched by a single mathematical model reproducing the epidemiological dynamics with a time-dependent transmission rate. We provide a method to compute this transmission rate and reconstruct the changes in the social interactions between people as well as changes in host-pathogen interactions. This method is applied to the cumulative case data of 8 different geographic areas.

Findings

We reconstruct the transmission rate from the data, therefore we are in position to understand the contribution of the dynamical effects of social interactions (contacts between individuals) and the contribution of the dynamics of the epidemic. We deduce from the comparison of several instantaneous reproduction numbers that the social effects are the most important in the dynamic of COVID-19. We obtain an instantaneous reproduction number that stays below 3.5 from early beginning of the epidemic.

Conclusion

The instantaneous reproduction number staying below 3.5 implies that it is sufficient to vaccinate 71% of the population in each state or country considered in our study. Therefore assuming the vaccines will remain efficient against the new variants, and to be more confident it is sufficient to vaccinate 75 − 80% to get rid of COVID-19 in each state or country.

Funding

This research was funded by the Agence Nationale de la Recherche in France (Project name: MPCUII (PM) and (QG))

Article activity feed

  1. SciScore for 10.1101/2021.06.16.21259019: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.