Mapping Potential Antigenic Drift Sites (PADS) on SARS-CoV-2 Spike in Continuous Epitope-Paratope Space

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

SARS-CoV-2 mutations with antigenic effects pose a risk to immunity developed through vaccination and natural infection. While vaccine updates for current variants of concern (VOCs) are underway, it is likewise important to prepare for further antigenic mutations as the virus navigates the heterogeneous global landscape of host immunity. Toward this end, a wealth of data and tools exist that can augment existing genetic surveillance of VOC evolution. In this study, we integrate published datasets describing genetic, structural, and functional constraints on mutation along with computational analyses of antibody-spike co-crystal structures to identify a set of potential antigenic drift sites (PADS) within the receptor binding domain (RBD) and N-terminal domain (NTD) of SARS-CoV-2 spike protein. Further, we project the PADS set into a continuous epitope-paratope space to facilitate interpretation of the degree to which newly observed mutations might be antigenically synergistic with existing VOC mutations, and this representation suggests that functionally convergent and synergistic antigenic mutations are accruing across VOC NTDs. The PADS set and synergy visualization serve as a reference as new mutations are detected on VOCs, enable proactive investigation of potentially synergistic mutations, and offer guidance to antibody and vaccine design efforts.

Graphical Abstract

Article activity feed

  1. SciScore for 10.1101/2021.06.07.446560: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The set of RBD SNPs was determined using a custom script and computed on the SARS-CoV-2 reference genome (NCBI RefSeq NC_045512.2).
    RefSeq
    suggested: (RefSeq, RRID:SCR_003496)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.