Group Testing Large Populations for SARS-CoV-2
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Group testing, the testing paradigm which combines multiple samples within a single test, was introduced in 1943 by Robert Dorfman. Since its original proposal for syphilis screening, group testing has been applied in domains such as fault identification in electrical and computer networks, machine learning, data mining, and cryptography. The SARS-CoV-2 pandemic has led to proposals for using group testing in its original context of identifying infected individuals in a population with few tests. Studies suggest that non-adaptive group testing - in which all the tests are determined in advance - for SARS-CoV-2 could help save 20% to 90% of tests depending on the prevalence. However, no systematic approach for comparing different non-adaptive group testing strategies currently exists.
In this paper we develop a software platform for evaluating non-adaptive group testing strategies in both a noiseless setting and in the presence of realistic noise sources, modelled on published experimental observations, which makes them applicable to polymerase chain reaction (PCR) tests, the dominant type of tests for SARS-CoV-2. This modular platform can be used with a variety of group testing designs and decoding algorithms. We use it to evaluate the performance of near-doubly-regular designs and a decoding algorithm based on an integer linear programming formulation, both of which are known to be optimal in some regimes. We find savings between 40% and 91% of tests for prevalences up to 10% when a small error (below 5%) is allowed. We also find that the performance degrades gracefully with noise. We expect our modular, user-friendly, publicly available platform to facilitate empirical research into non-adaptive group testing for SARS-CoV-2.
Article activity feed
-
SciScore for 10.1101/2021.06.03.21258258: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a …
SciScore for 10.1101/2021.06.03.21258258: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-