Classifying Texas counties using ARIMA Models on COVID-19 daily confirmed cases: the impact of political affiliation and face covering orders

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

The aim of this paper is to investigate whether the 254 Texas counties in the United States can be grouped in a meaningful way according to the characteristics of the ARIMA or seasonal ARIMA models fitting the logarithm of daily confirmed cases of the Coronavirus Disease 2019 (COVID-19) for 254 counties in Texas of the United States. We analyze clusters of the model’s non-seasonal parameters ( p, d, q ), distinguishing between county-level political affiliations and face covering orders, and also consider county-level population and poverty rate. Using data from March 4, 2020 to March 15, 2021, we find that 223 of the total 254 counties are clustered into 23 model parameters ( p, d, q ), while the number of cases in the remaining 31 counties could not be successfully fitted to ARIMA models. We also find the impact of the county-level infection rate and the county-level poverty rate on clusters of counties with different political affiliations and face covering orders. Further, we find that the infection rate and the poverty rate had a significant high positive correlation, and Democrat-leaning counties, which tend to have large populations, had a higher correlation coefficient between infection rate and poverty rate. We also observe a significant high positive correlation between the infection rate and the number of cumulative cases in Republican counties that had not imposed a face covering order.

Article activity feed

  1. SciScore for 10.1101/2021.06.02.21258221: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.