Classifying Texas counties using ARIMA Models on COVID-19 daily confirmed cases: the impact of political affiliation and face covering orders
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
The aim of this paper is to investigate whether the 254 Texas counties in the United States can be grouped in a meaningful way according to the characteristics of the ARIMA or seasonal ARIMA models fitting the logarithm of daily confirmed cases of the Coronavirus Disease 2019 (COVID-19) for 254 counties in Texas of the United States. We analyze clusters of the model’s non-seasonal parameters ( p, d, q ), distinguishing between county-level political affiliations and face covering orders, and also consider county-level population and poverty rate. Using data from March 4, 2020 to March 15, 2021, we find that 223 of the total 254 counties are clustered into 23 model parameters ( p, d, q ), while the number of cases in the remaining 31 counties could not be successfully fitted to ARIMA models. We also find the impact of the county-level infection rate and the county-level poverty rate on clusters of counties with different political affiliations and face covering orders. Further, we find that the infection rate and the poverty rate had a significant high positive correlation, and Democrat-leaning counties, which tend to have large populations, had a higher correlation coefficient between infection rate and poverty rate. We also observe a significant high positive correlation between the infection rate and the number of cumulative cases in Republican counties that had not imposed a face covering order.
Article activity feed
-
SciScore for 10.1101/2021.06.02.21258221: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when …
SciScore for 10.1101/2021.06.02.21258221: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-
