Forecasting COVID-19 Number of Cases by Implementing ARIMA and SARIMA with Grid Search in United States
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
COVID-19 has surged in the United States since January 2020. Since then, social distancing and lockdown have helped many people to avoid infectious diseases. However, this did not help the upswing of the number of cases after the lockdown was finished. Modeling the infectious disease can help the health care providers and governors to plan ahead for obtain the needed resources. In this manner, precise short-term determining of the number of cases can be imperative to the healthcare system. Many models have been used since the pandemic has started. In this paper we will compare couple of time series models like Simple Moving Average, Exponentially Weighted Moving Average, Holt-Winters Double Exponential Smoothing Additive, ARIMA, and SARIMA. Two models that have been used to predict the number of cases are ARIMA and SARIMA. A grid search has been implemented to select the best combination of the parameters for both models. Results show that in the case of modeling, the Holt-Winters Double Exponential model outperforms Exponentially Weighted Moving Average and Simple Moving Average while forecasting ARIMA outperforms SARIMA.
Article activity feed
-
SciScore for 10.1101/2021.05.29.21258041: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank…
SciScore for 10.1101/2021.05.29.21258041: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-