Deep Covid - Covid Diagnosis Using Deep Neural Networks and Transfer Learning

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Coronavirus is a global emergency as of May 2021. If not acted upon by drugs at the right time, coronavirus may result in the death of individuals. Hence early diagnosis is very important along the progress of the disease. This paper focuses on coronavirus detection using x-ray images, for automating the diagnosis pipeline using convolutional neural networks and transfer learning. This could be deployed in places where radiologists are not easily available in order to detect the disease at very early stages. In this study we propose our deep learning architecture for the classification task, which is trained with modified images, through multiple steps of preprocessing. Our classification method uses convolutional neural networks and transfer learning architecture for classifying the images. Our findings yield an accuracy value of 91.03%, precision of 89.76 %, recall value of 96.67% and F1 score of 93.09%.

Article activity feed

  1. SciScore for 10.1101/2021.05.20.21257387: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.