Uncovering cryptic pockets in the SARS-CoV-2 spike glycoprotein

This article has been Reviewed by the following groups

Read the full article

Abstract

The recent global COVID-19 pandemic has prompted a rapid response in terms of vaccine and drug development targeting the viral pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this work, we modelled a complete membrane-embedded SARS-CoV-2 spike (S) protein, the primary target of vaccine and therapeutics development, based on available structural data and known glycan content. We then used molecular dynamics (MD) simulations to study the system in the presence of benzene probes designed to enhance discovery of cryptic, potentially druggable pockets on the S protein surface. We uncovered a novel cryptic pocket with promising druggable properties located underneath the 617-628 loop, which was shown to be involved in the formation of S protein multimers on the viral surface. A marked multi-conformational behaviour of this loop in simulations was validated using hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments, supportive of opening and closing dynamics. Interestingly, the pocket is also the site of the D614G mutation, known to be important for SARS-CoV-2 fitness, and within close proximity to mutations in the novel SARS-CoV-2 strains B.1.1.7 and B.1.1.28, both of which are associated with increased transmissibility and severity of infection. The pocket was present in systems emulating both immature and mature glycosylation states, suggesting its druggability may not be dependent upon the stage of virus maturation. Overall, the predominantly hydrophobic nature of the cryptic pocket, its well conserved surface, and proximity to regions of functional relevance in viral assembly and fitness are all promising indicators of its potential for therapeutic targeting. Our method also successfully recapitulated hydrophobic pockets in the receptor binding domain and N-terminal domain associated with detergent or lipid binding in prior cryo-electron microscopy (cryo-EM) studies. Collectively, this work highlights the utility of the benzene mapping approach in uncovering potential druggable sites on the surface of SARS-CoV-2 targets.

Article activity feed

  1. SciScore for 10.1101/2021.05.05.442536: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.