Population Vaccine Effectiveness and its Implication for Control of the Spread of COVID-19 in the US
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Realized vaccine efficacy in population is highly different from the individual vaccine efficacy measured in clinical trial. The realized vaccine efficacy in population is substantially affected by the vaccine age-stratified prioritization strategy, population age-structure, non-pharmaceutical intervention (NPI). We proposed a population vaccine efficacy which integrated individual vaccine efficacy, vaccine prioritization strategy and NPI to measure and monitor the control of the spread of COVID-19. We found that 11 states in the US had low population vaccine efficacy and 20 states had high population efficacy. We demonstrated that although the proportion of the population who received at least one dose of COVID-19 vaccine across 11 low population vaccine efficacy states, in general, was greater than that in 20 high population vaccine efficacy states, the 11 low population vaccine efficacy states experienced the recent COVID-19 surge, while the number of new cases in the 20 high population vaccine efficacy states exponentially decreased. We demonstrated that the proportions of adults in the population across 50 states were significantly associated with the forecasted ending date of the COVID-19. We show that it was recent low proportion of adults vaccinated in Michigan that caused its COVID-19 surge. Using population vaccination efficacy, we forecasted that the earliest COVID-19 ending states were Hawaii, Arizona, Arkansas, and California (in the end of June, 2021) and the last COVID-19 ending states were Colorado, New York and Michigan (in the Spring, 2022).
Article activity feed
-
SciScore for 10.1101/2021.04.30.21256228: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter:…
SciScore for 10.1101/2021.04.30.21256228: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-