Adverse effects of COVID-19 vaccination: machine learning and statistical approach to identify and classify incidences of morbidity and post-vaccination reactogenicity

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Good vaccine safety and reliability are essential to prevent infectious disease spread. A small but significant number of apparent adverse reactions to the new COVID-19 vaccines have been reported. Here, we aim to identify possible common causes for such adverse reactions with a view to enabling strategies that reduce patient risk by using patient data to classify and characterise patients those at risk of such reactions. We examined patient medical histories and data documenting post-vaccination effects and outcomes. The data analyses were conducted by different statistical approaches followed by a set of machine learning classification algorithms. In most cases, similar features were significantly associated with poor patient reactions. These included patient prior illnesses, admission to hospitals and SARS-CoV-2 reinfection. The analyses indicated that patient age, gender, allergic history, taking other medications, type-2 diabetes, hypertension and heart disease are the most significant pre-existing factors associated with risk of poor outcome and long duration of hospital treatments, pyrexia, headache, dyspnoea, chills, fatigue, various kind of pain and dizziness are the most significant clinical predictors. The machine learning classifiers using medical history were also able to predict patients most likely to have complication-free vaccination with an accuracy score above 85%. Our study identifies profiles of individuals that may need extra monitoring and care (e.g., vaccination at a location with access to comprehensive clinical support) to reduce negative outcomes through classification approaches. Important classifiers achieving these reactions notably included allergic susceptibility and incidence of heart disease or type-2 diabetes.

Article activity feed

  1. SciScore for 10.1101/2021.04.16.21255618: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variableInitially, we have extracted and transformed values from the raw textual dataset11, i.e. in the “gender” field there were three types of values, i.e. ‘M’ as male, ‘F’ as female, and ‘U’ as unknown gender.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.