Two Distinct Dynamic Process Models of COVID-19 Spread with Divergent Vaccination Outcomes

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Kinematic models of contagion-based viral transmission describe patterns of events over time (e.g., new infections), relying typically on systems of differential equations to reproduce those patterns. By contrast, agent-based models of viral transmission seek to relate those events or patterns of events to causes, expressed in terms of factors (parameters) that determine the dynamics that give rise to those events.

This paper is concerned with the dynamics of contagion-based spread of infection. Dynamics that reflect time homogeneous vs inhomogeneous transmission rates are generated via an agent-based infectious disease modeling tool (CovidSIMVL - github.com/ecsendmail/MultiverseContagion ). These different dynamics are treated as causal factors and are related to differences in vaccine efficacy in an array of simulated vaccination trials. Visualizations of simulated trials and associated metrics illustrate graphically some cogent reasons for not effectively hard-coding assumptions of dynamic temporal homogeneity, which come ‘pre-packaged’ with the mass action incidence assumption that underpins typical equation-based models of infection spread.

Article activity feed

  1. SciScore for 10.1101/2021.04.09.21255166: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.