COVID-19 Time-varying Reproduction Numbers Worldwide: An Empirical Analysis of Mandatory and Voluntary Social Distancing

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

This paper estimates time-varying COVID-19 reproduction numbers worldwide solely based on the number of reported infected cases, allowing for under-reporting. Estimation is based on a moment condition that can be derived from an agent-based stochastic network model of COVID-19 transmission. The outcomes in terms of the reproduction number and the trajectory of per-capita cases through the end of 2020 are very diverse. The reproduction number depends on the transmission rate and the proportion of susceptible population, or the herd immunity effect. Changes in the transmission rate depend on changes in the behavior of the virus, re-flecting mutations and vaccinations, and changes in people’s behavior, reflecting voluntary or government mandated isolation. Over our sample period, neither mutation nor vaccination are major factors, so one can attribute variation in the transmission rate to variations in behavior. Evidence based on panel data models explaining transmission rates for nine European countries indicates that the diversity of outcomes resulted from the non-linear interaction of mandatory containment measures, voluntary precautionary isolation, and the economic incentives that gov-ernments provided to support isolation. These effects are precisely estimated and robust to various assumptions. As a result, countries with seemingly different social distancing policies achieved quite similar outcomes in terms of the reproduction number. These results imply that ignoring the voluntary component of social distancing could introduce an upward bias in the estimates of the effects of lock-downs and support policies on the transmission rates.

JEL Classification

D0, F6, C4, I120, E7

Article activity feed

  1. SciScore for 10.1101/2021.04.06.21255033: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.