Genetic associations with severe COVID-19

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Identification of host genetic factors that predispose individuals to severe COVID-19 is important, not only for understanding the disease and guiding the development of treatments, but also for risk prediction when combined to form a polygenic risk score (PRS). Using population controls, Pairo-Castineira et al. identified 12 SNPs (a panel of 8 SNPs and a panel of 6 SNPs, with two SNPs in both panels) associated with severe COVID-19. Using controls with asymptomatic or mild COVID-19, we were able to replicate the association with severe COVID-19 for only three of their SNPs and found marginal evidence for an association for one other. When combined as an 8-SNP PRS and a 6-SNP PRS, we found no evidence of association with severe COVID-19. The difference in our results and the results of Pairo-Castineira et al. might be the choice of controls: population controls vs controls with asymptomatic or mild COVID-19.

Article activity feed

  1. SciScore for 10.1101/2021.03.29.21254509: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.