COVIDrugNet: a network-based web tool to investigate the drugs currently in clinical trial to contrast COVID-19

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

The COVID-19 pandemic poses a huge problem of public health that requires the implementation of all available means to contrast it, and drugs are one of them. In this context, we observed an unmet need of depicting the continuously evolving scenario of the ongoing drug clinical trials through an easy-to-use, freely accessible online tool. Starting from this consideration, we developed COVIDrugNet ( http://compmedchem.unibo.it/covidrugnet ), a web application that allows users to capture a holistic view and keep up to date on how the clinical drug research is responding to the SARS-CoV-2 infection.

Here, we describe the web app and show through some examples how one can explore the whole landscape of medicines in clinical trial for the treatment of COVID-19 and try to probe the consistency of the current approaches with the available biological and pharmacological evidence. We conclude that careful analyses of the COVID-19 drug-target system based on COVIDrugNet can help to understand the biological implications of the proposed drug options, and eventually improve the search for more effective therapies.

Article activity feed

  1. SciScore for 10.1101/2021.03.05.433897: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    From the same site and from PubChem, we gathered some features related to structure, as well as pharmacological classification, pharmacodynamics, and pharmacokinetics of each drug (Table 1).
    PubChem
    suggested: (PubChem, RRID:SCR_004284)
    As regards the drug targets, they were retrieved from DrugBank, and in this case we collected some information on classification, biology, and pharmacology of each protein.
    DrugBank
    suggested: (DrugBank, RRID:SCR_002700)
    The latter, instead, retrieves the data from the created database and sets up the front-end part of COVIDrugNet with Python Dash54.
    Python
    suggested: (IPython, RRID:SCR_001658)

    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.