Estimating the super-spreading rate at workplaces using bluetooth technology

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Workplaces deploy internal guidelines to remain operational during the ongoing COVID-19 pandemic. It is challenging to assess whether those interventions will prevent super-spreading events, where an infected individual transmits the disease to 10 or more secondary cases. Here we provide a model of infectious disease at the level of a workplace to address that problem. We take as input proximity contact records based on bluetooth technology and the infectious disease parameters from the literature. Using proximity contact data for a case-study workplace and an infection transmission model, we estimate the SARS-CoV-2 transmission rate as 0.014 per proximity contact, going up to 0.041 for the SARS-CoV-2 B.1.1.7 variant first detected in the UK. Defining super-spreading as events with 10 or more secondary infections, we obtain a super-spreading event rate of 2.3 per 1000 imported SARS-CoV-2 cases, rising up to 13.7 for SARS-CoV-2 B.1.1.7. This methodology provides the means for workplaces to determine their internal super-spreading rate or other infection related risks.

Article activity feed

  1. SciScore for 10.1101/2021.03.04.21252550: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.