An Explainable Artificial Intelligence based Prospective Framework for COVID-19 Risk Prediction

This article has been Reviewed by the following groups

Read the full article

Abstract

Given the spread of COVID-19 to vast geographical regions and populations, it is not feasible to undergo or recommend the RT-PCR based tests to all individuals with flu-like symptoms. The reach of RT-PCR based testing is still limited due to the high cost of the test and huge population in few countries. Thus, alternative methods for COVID-19 infection risk prediction can be useful. We built an explainable artificial intelligence (AI) based integrated web-based prospective framework for COVID-19 risk prediction. We employed a two-step procedure for the non-clinical prediction of COVID19 infection risk. In the first step we assess the initial risk of COVID19 infection based on carefully selected parameters associated with COVID-19 positive symptoms from recent research. Generally, X-ray scans are cheaper and easily available in most government and private health centres. Therefore, based on the outcome of the computed initial risk in first step, we further provide an optional prediction using the chest X-ray scans in the second step of our proposed AI based prospective framework. Since there is a bottleneck to undergo an expensive RT-PCR based confirmatory test in economically backward nations, this is a crucial part of our explainable AI based prospective framework. The initial risk assessment outcome is analysed in combination with the advanced deep learning-based analysis of chest X-ray scans to provide an accurate prediction of COVID-19 infection risk. This prospective web-based AI framework can be employed in limited resource settings after clinical validation in future. The cost and time associated with the adoption of this prospective AI based prospective framework will be minimal and hence it will be beneficial to majority of the population living in low-income settings such as small towns and rural areas that have limited access to advanced healthcare facilities.

Article activity feed

  1. SciScore for 10.1101/2021.03.02.21252269: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    2.5 Web Application development: The web application has been built using the Django framework and Python programming language to deploy the machine learning model for taking inputs and return the prediction results.
    Python
    suggested: (IPython, RRID:SCR_001658)
    Django framework provides the necessary layout for a web application that can be changed according to the requirement.
    Django
    suggested: (Django, RRID:SCR_012855)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.