Graphical Models of Pandemic

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Both COVID-19 and novel pandemics challenge those of us within the modeling community, specifically in establishing suitable relations between lifecycles, scales, and existing methods. Herein we demonstrate transitions between models in space/time, individual-to-community, county-to-city, along with models for the trace beginning with exposure, then to symptom manifest, then to community transmission. To that end, we leverage publicly available data to compose a chain of Graphical Models (GMs) for predicting infection rates across communities, space, and time. We’ll anchor our GMs against the more expensive yet state-of-the-art Agent-Based Models (ABMs). Insight obtained from designing novel GMs calibrated to ABMs furnishes reduced, yet reliable surrogates for the end-to-end public health challenge of community contact tracing and transmission. Further, this novel research transcends and synergizes information integration and informatics, leading to an advance in the science of GMs. Cognizance into the data lifecycle using properly coarse-grained modeling will broaden the toolkit available to public health specialists, and hopefully empower governments and health agencies, here and abroad, in addressing the profound challenges in disease and vaccination campaigns confronting us by COVID and future pandemics.

In this proof of principle study, focusing on the GM methodology development, we show, first, how static GM of the Ising model type (characterized by pair-wise interaction between nodes related to traffic and communications between nodes representing communities, or census tracts within a given city, and with local infection bias) emerge from a dynamic GM of the Independent Cascade type, introduced and studied in Computer and Networks sciences mainly in the context of the spread of social influences. Second, we formulate the problem of inference in epidemiology as inference problems in the Ising model setting. Specifically, we pose the challenge of computing Conditional A-posteriori Level of Infection (CALI), which provides a quantitative answer to the questions: What is the probability that a given node in the GM (given census tract within the city) becomes infected in the result of injection of the infection at another node, e.g. due to arrival of a super-spreader agent or occurence of the super-spreader event in the area. To answer the question exactly is not feasible for any realistic size (larger than 30-50 nodes) model. We therefore adopt and develop approximate inference techniques, of the variational and variable elimination types, developed in the GM literature. To demonstrate utility of the methodology, which seems new for the public health application, we build a 123-node model of Seattle, as well as its 10-node and 20-node coarsegrained variants, and then conduct the proof of principles experimental studies. The experiments on the coarse-grained models have helped us to validate the approximate inference by juxtaposing it to the exact inference. The experiments also lead to discovery of interesting and most probably universal phenomena. In particular, we observe (a) a strong sensitivity of CALI to the location of the initial infection, and (b) strong alignment of the resulting infection probability (values of CALI) observed at different nodes in the regimes of moderate interaction between the nodes. We then speculate how these, and other observations drawn from the synthetic experiments, can be extended to a more realistic, data driven setting of actual operation importance. We conclude the manuscript with an extensive discussion of how the methodology should be developed further, both at the level of devising realistic GMs from observational data (and also enhancing it with microscopic ABM modeling and simulations) and also regarding utilization of the GM inference methodology for more complex problems of the pandemic mitigation and control.

Article activity feed

  1. SciScore for 10.1101/2021.02.24.21252390: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.