Reanalysis of deep-sequencing data from Austria points towards a small SARS-COV-2 transmission bottleneck on the order of one to three virions

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

An early analysis of SARS-CoV-2 deep-sequencing data that combined epidemiological and genetic data to characterize the transmission dynamics of the virus in and beyond Austria concluded that the size of the virus’s transmission bottleneck was large – on the order of 1000 virions. We performed new computational analyses using these deep-sequenced samples from Austria. Our analyses included characterization of transmission bottleneck sizes across a range of variant calling thresholds and examination of patterns of shared low-frequency variants between transmission pairs in cases where de novo genetic variation was present in the recipient. From these analyses, among others, we found that SARS-CoV-2 transmission bottlenecks are instead likely to be very tight, on the order of 1-3 virions. These findings have important consequences for understanding how SARS-CoV-2 evolves between hosts and the processes shaping genetic variation observed at the population level.

Article activity feed

  1. SciScore for 10.1101/2021.02.22.432096: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.