Jumper Enables Discontinuous Transcript Assembly in Coronaviruses

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Genes in SARS-CoV-2 and, more generally, in viruses in the order of Nidovirales are expressed by a process of discontinuous transcription mediated by the viral RNA-dependent RNA polymerase. This process is distinct from alternative splicing in eukaryotes, rendering current transcript assembly methods unsuitable to Nidovirales sequencing samples. Here, we introduce the D iscontinuous T ranscript A ssembly problem of finding transcripts and their abundances c given an alignment under a maximum likelihood model that accounts for varying transcript lengths. Underpinning our approach is the concept of a segment graph, a directed acyclic graph that, distinct from the splice graph used to characterize alternative splicing, has a unique Hamiltonian path. We provide a compact characterization of solutions as subsets of non-overlapping edges in this graph, enabling the formulation of an efficient mixed integer linear program. We show using simulations that our method, J umper , drastically outperforms existing methods for classical transcript assembly. On short-read data of SARS-CoV-1 and SARS-CoV-2 samples, we find that J umper not only identifies canonical transcripts that are part of the reference transcriptome, but also predicts expression of non-canonical transcripts that are well supported by direct evidence from long-read data, presence in multiple, independent samples or a conserved core sequence. J umper enables detailed analyses of Nidovirales transcriptomes.

Code availability

Software is available at https://github.com/elkebir-group/Jumper

Article activity feed

  1. SciScore for 10.1101/2021.02.12.431026: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Jumper is implemented in Python 3 using Gurobi [22] (version 9.0.3) to solve the MILP and pysam [23] for reading and processing the input BAM file.
    Python
    suggested: (IPython, RRID:SCR_001658)

    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.