Multivariate spatio-temporal analysis of the global COVID-19 pandemic

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The COVID-19 pandemic has caused significant mortality and disruption on a global scale not seen in living memory. Understanding the spatial and temporal vectors of transmission as well as similarities in the trajectories of recorded cases and deaths across countries can aid in understanding the benefit or otherwise of varying interventions and control strategies on virus transmission. It can also highlight emerging globa trends as they occur. Data on number of cases and deaths across the globe have been made available through a variety of databases and provide a wide range of opportunities for the application of multivariate statistical methods to extract information on similarity or difference from them. Here we conduct spatial and temporal multivariate statistical analyses of global COVID-19 cases and deaths for the period spanning January to August 2020, using a variety of distance based multivariate methods to cluster countries according to similar temporal trends in cases and deaths resulting from COVID-19. We also use novel air passenger data as a proxy for movement between countries. The air passenger movement can act as an important vector of transmission and thus scaling covariance matrices before conducting dimension reduction techniques can account for known structures in the data and help highlight important residual spatial and/or temporal trends that may then be attributable to the success of interventions or other cultural differences. Global temporal structure is found to be of significantly more importance than local spatial structure in terms of global dynamics. Our results highlight a significant global change in case and mortality daynamics from early-August, consistent in timing with the emergence of new strains with highger levels of transmission. We propose the methodology offers great potential in real-time analysis of complex, noisy spatio-temporal data and the extraction of emerging changes in pandemic dynamics that can support policy and decision makers.

Article activity feed

  1. SciScore for 10.1101/2021.02.08.21251339: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.