The local topological free energy of the SARS-CoV-2 Spike protein

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

The novel coronavirus SARS-CoV-2 infects human cells using a mechanism that involves binding and structural rearrangement of its spike protein. Understanding protein rearrangement and identifying specific residues where mutations affect protein rearrangement has attracted a lot of attention for drug development. We use a mathematical method introduced in [9] to associate a local topological/geometrical free energy along the SARS-CoV-2 spike protein backbone. Our results show that the total local topological free energy of the SARS-CoV-2 spike protein monotonically decreases from pre-to post-fusion and that its distribution along the protein domains is related to their activity in protein rearrangement. By using density functional theory (DFT) calculations with inclusion of solvent effects, we show that high local topological free energy conformations are unstable compared to those of low topological free energy. By comparing to experimental data, we find that the high local topological free energy conformations in the spike protein are associated with mutations which have the largest experimentally observed effect to protein rearrangement.

Article activity feed

  1. SciScore for 10.1101/2021.02.06.430094: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.