How effective was Newfoundland & Labrador’s travel ban to prevent the spread of COVID-19? An agent-based analysis

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

To prevent the spread of COVID-19 in Newfoundland & Labrador (NL), NL implemented a wide travel ban in May 2020. We estimate the effectiveness of this travel ban using a customized agent-based simulation (ABS).

Methods

We built an individual-level ABS to simulate the movements and behaviors of every member of the NL population, including arriving and departing travellers. The model considers individual properties (spatial location, age, comorbidities) and movements between environments, as well as age-based disease transmission with pre-symptomatic, symptomatic, and asymptomatic transmission rates. We examine low, medium, and high travel volume, traveller infection rates, and traveller quarantine compliance rates to determine the effect of travellers on COVID spread, and the ability of contact tracing to contain outbreaks.

Results

Infected travellers increased COVID cases by 2-52x (8-96x) times and peak hospitalizations by 2-49x (8-94x), with (without) contact tracing. Although contact tracing was highly effective at reducing spread, it was insufficient to stop outbreaks caused by travellers in even the best-case scenario, and the likelihood of exceeding contact tracing capacity was a concern in most scenarios. Quarantine compliance had only a small impact on COVID spread; travel volume and infection rate drove spread.

Interpretation

NL’s travel ban was likely a critically important intervention to prevent COVID spread. Even a small number of infected travellers can play a significant role in introducing new chains of transmission, resulting in exponential community spread and significant increases in hospitalizations, while outpacing contact tracing capabilities. With the presence of more transmissible variants, e.g., the UK variant, prevention of imported cases is even more critical.

Article activity feed

  1. SciScore for 10.1101/2021.02.05.21251157: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.